

# Geo-Technical Investigation "from Chikabanavara via yeswanpur and Hebbal to Bayanapalli" & "From Helalige to Rajankunte" – Corridor 2 Bangalore Sub urban Railway Project



# CLIENT

Rail Infrastructure Development Company (Karnataka) Ltd,

#8, 1st Floor, Samparka Soudha, Dr.Rajkumar Road, opposite Orion Mall, Rajajinagar 1st Block, Bengaluru-568010.

# PREPARED BY



Myrtle Project And Consultancy Pvt. Ltd, (An ISO/IEC 17025:2017 NABL Accredited Laboratory) 4/24, First Floor, Shivaya Nagar Main Road, Alagapuram, Salem, Tamil Nadu.

# **GEO-TECHNICAL INVESTIGATION REPORT- 8 BOREHOLES**



| Reference No. | : K-RIDE/PROJECTS/65/2020/SBRP/5051 |
|---------------|-------------------------------------|
| Report No.    | + MPAC/TD/2021-0045/R_0             |
| Revision      | <u>:</u> 00                         |
| Report Issued | 22-10-2021                          |

| Description   | Prepared by Reviewed by |                   | Approved by       |  |
|---------------|-------------------------|-------------------|-------------------|--|
|               | p Bra                   | R.Aj. the         | S. Praint         |  |
| Draft copy-10 | R.Reshma                | R.Ajantha         | S.Prasath         |  |
|               | Team Lead               | Assistant Manager | Managing Director |  |



# **Document History**

| Revision | Issue Date | Description                                                |
|----------|------------|------------------------------------------------------------|
| 00       | 27-03-2021 | Draft Copy 01 (5 BH's)                                     |
| 00       | 07-04-2021 | Draft Copy 02 [16 BH's]<br>(Draft copy:1 -5 BH's included) |
| 00       | 12-04-2021 | Draft Copy 03 [07 BH's]                                    |
| 00       | 07-05-2021 | Draft Copy 04 [28 BH's]                                    |
| 00       | 29-05-2021 | Draft Copy 05 [23 BH's]                                    |
| 01       | 28-06-2021 | Draft Copy 02 [16 BH's]-Chemical<br>analysis included      |
| 01       | 28-06-2021 | Draft Copy 03 [07 BH's]- Chemical<br>analysis included     |
| 00       | 09-09-2021 | Draft Copy 06 [60 BH's]                                    |
| 00       | 19-09-2021 | Draft Copy 07 [1 BH]                                       |
| 00       | 22-09-2021 | Draft Copy 08 [14 BH's]                                    |
| 00       | 11-10-2021 | Draft Copy 09 [30 BH's]                                    |
| 00       | 22-10-2021 | Draft Copy 10 [08 BH's]                                    |

This document has been issued and amended as follows:

# **Contact Information**

Myrtle Project And Consultancy Pvt. Ltd.

4/24 , First Floor,

Shivaya Nagar Main Road,

Alagapuram, Salem-636016.

Telephone No.: 0427-4040750 / 0427- 2440366

Mobile No.: +91 8668093567 / +91 8668093569



# Acronyms and Abbreviations

The following acronyms and abbreviations are used throughout this document:

| Abbreviation | Definition                      |
|--------------|---------------------------------|
| BDL          | Below Detection Limit           |
| вн           | Bore Hole                       |
| Сс           | Compression Index               |
| CR           | Core Recovery                   |
| Cu           | Consolidated Undrained          |
| DL           | Detection Limit                 |
| DS           | Disturbed Sample                |
| FSI          | Free Swell Index                |
| IR           | Indian Railway                  |
| IS           | Indian Standards                |
| LC           | Level Crossing                  |
| NP           | Non Plastic                     |
| RA           | Reaffirmed                      |
| RMR          | Rock Mass Rating                |
| RQD          | Rock Quality Designation        |
| SPT          | Standard Penetration Test       |
| UCC          | Unconfined Compression          |
| UCS          | Unconfined Compressive Strength |
| UDS          | Undisturbed Sample              |
| UU           | Unconsolidated Undrained        |
| WS           | Washing Sample                  |
| WT           | Water Table                     |



# Contents

| S.No  | Section                              |                                                                                                                                                                                                                                                                                                                                                        | Page                 |
|-------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.0   | Introduct                            | ion                                                                                                                                                                                                                                                                                                                                                    | 5                    |
| 2.0   | Scope of                             | work                                                                                                                                                                                                                                                                                                                                                   | 5                    |
| 3.0   | Overview<br>3.1<br>3.2<br>3.3<br>3.4 | Methodology of Field investigation   3.1.1. Boring   3.1.2. Standard Penetration test   3.1.3. Disturbed & Undisturbed samples   3.1.4. Rock Coring   3.1.5. Ground Water table   3.1.6. Backfilling of boreholes   Laboratory Test   3.2.1. For Soil   3.2.2. For Rock   3.2.3. Chemical analysis of water samples   Geology of the Area   Seismicity | 5556666699999        |
| 4.0   | Sub soil p<br>4.1                    | brofile and strength characteristics of soil                                                                                                                                                                                                                                                                                                           | 10<br>10             |
| 5.0   | Design &<br>5.1<br>5.2<br>5.3        | Recommendation<br>Design Methodology<br>Computation<br>Recommendations                                                                                                                                                                                                                                                                                 | 13<br>13<br>18<br>19 |
| Anne  | xure-I                               | Chemical Analysis for Water sample                                                                                                                                                                                                                                                                                                                     | 21                   |
| Annex | kure-II                              | Bore Log and Figures                                                                                                                                                                                                                                                                                                                                   | 23                   |
| Annex | ure-III                              | Soil & Rock Test Results                                                                                                                                                                                                                                                                                                                               | 32                   |
| Annex | ure-IV                               | Graphs                                                                                                                                                                                                                                                                                                                                                 | 41                   |
| Anne  | xure-V                               | Laboratory Test Photos                                                                                                                                                                                                                                                                                                                                 | 45                   |
| Annex | ure-VI                               | Site Photos                                                                                                                                                                                                                                                                                                                                            | 47                   |



# **1.0 Introduction**

M/S.MYRTLE PROJECT AND CONSULTANCY PVT LTD., had been awarded the work of Geo-Technical Investigation "from Chikabanavara via yeswanpur and Hebbal to Bayanapalli" & "From Helalige to Rajankunte" – Corridor 2 Bangalore Sub urban Railway Project. This report presents the details of Geo-Technical investigations carried out and data obtained from various field and laboratory tests, their presentation in graphical form and their compilation for Rail Infrastructure Development Company (Karnataka) Ltd, based on 8 Boreholes.

# 2.0 Scope of work

- a. Drilling boreholes by Rotary drilling maximum upto 33.0 m as per IS: 1892 1979 of practice and at locations as directed by Engineer-in-Charge.
- b. Conducting Standard Penetration tests in the bore holes at regular intervals of 1.50m or change in stratum as per IS: 2131-1981.
- c. Collecting undisturbed soil samples in thin walled tube sampler as per IS: 2132 1986 at every 3m interval or as directed by the Engineer-in-Charge.
- d. Collecting core samples from the bore holes as per IS: 4078 1980 and recording Rock Quality Designation (RQD) and Core recovery (CR).
- e. Recording of water table level in the bore holes after drilling.
- f. Conducting laboratory tests on relevant Soil /Rock samples as per IS Code specifications.
- g. Conducting Chemical tests on Water Samples.
- h. Preparation of report summarizing the details of soil classification, analysis of test data, type of foundation etc.
- i. Survey of boreholes location and plotting the locations along with its elevation as per alignment plan. (as directed by Engineer-in-Charge)

# 3.0 Overview

# 3.1 Methodology of Field investigation

### 3.1.1. Boring

Boreholes were drilled by Rotary drilling maximum upto 33.0 m depth. In refusal strata, drilling was resorted by Nx size diamond bits as per IS :1892 - 1979 of practice and as directed by Engineer-in-charge. The details of Boreholes drilled, depth of the borehole, depth of water table and road level are as given in Table :4.1.

### 3.1.2. Standard Penetration test

Rotary Calyx Rig (Manual lifting and dropping type) was used to conduct SPT at field. In accordance with IS: 2131-1981,SPT was conducted at every change of stratum or at intervals of not more than 1.5 m depth whichever occurs earlier. It was done by connecting the split spoon sampler to SPT rod and driving it upto 45 cm using a 63.5 kg hammer falling freely from a height of 75 cm. The number of blows required to penetrate the initial 15 cm of the split spoon was ignored for seating the sampler due to possible presence of loose materials or cutting from the drilling operation. The cumulative number of blows required to penetrate the balance 30 cm out of 45 cm was termed as the SPT or N values.



# 3.1.3. Disturbed & Undisturbed samples

i) Conducting Standard Penetration Test at 1.5 m / 3.0 m intervals, disturbed soil samples were collected using a split spoon sampler.

ii) Undisturbed soil samples were collected in soil layers wherever possible by using thin walled sampling tube and mentioned in the respective bore logs.

# 3.1.4. Rock Coring

Tungsten Carbide (TC) / Diamond bits were used to drill through weathered rock / hard rock stratum. Recovered cores were measured and percentages of CR and RQD has been calculated as per below:

%CR = [(Length of core) / (Length of run)] \* 100

%RQD = [(Length of core in pieces of 10cm & above) / (Length of run)] \* 100

### **3.1.5. Ground Water table**

Water table in each borehole was noted by allowing the water table level to stabilize for minimum 24 hrs. This can be noticed after the completion of drilling activity in each borehole. The depth of water level below EGL is noted in respective bore logs.

### 3.1.6. Backfilling of boreholes

All boreholes were backfilled in proper way after the termination of each boreholes. (as directed by Engineer incharge)

### 3.2 Laboratory Test

The following tests were performed in Laboratory on soil, rock & water samples collected from field.

### 3.2.1. For Soil

- Sieve Analysis- IS 2720 (Part 4) : 1985
- Hydrometer analysis IS 2720 (Part 4) : 1985
- Bulk & Dry Density IS 2720 (Part 29) : 1975
- Natural Moisture Content IS 2720 (Part 2) : 1973
- Specific Gravity IS 2720 (Part 3) : 1980
- Direct Shear IS 2720 (Part 13) : 1986
- Liquid limit & Plastic limit IS 2720 (Part 5): 1985
- Unconfined Compressive Test- IS 2720 (Part 10) : 1991
- Consolidation Test- IS 2720 (Part 15) : 1965

### i) Sieve Analysis- IS 2720 (Part 4) : 1985

Sieving was done using sieve shaker by passing through the following IS sieves: 4.75 mm, 2.00 mm, 425.00  $\mu$  and 75.00  $\mu.$ 



### ii) Hydrometer analysis - IS 2720 (Part 4) : 1985

50g of soil passing 75  $\mu$  IS sieve was mixed with 3.3g sodium hexa-meta-phosphate and 0.7g sodium carbonate, transferred to 1000 ml measuring cylinder and made up to exactly 1000 ml with distilled water and then agitated thoroughly. Hydrometer was immersed to a depth slightly below its floating position and then allowed to float freely. Hydrometer readings are taken at 10, 20, 30 and 45 sec and then at 1, 2, 4, 8, 15 and 30 min and 1, 2, 4, 8 and 24 hours intervals. The diameter of the particle in suspension at any sampling time't' is calculated using "Stokes" formula and the percentage finer is calculated. Semi log graph was then plotted with grain size (mm) in 'x' axis and percentage finer in 'y' axis. The graph represents respective percentage of various particle sizes (clay, silt, sand, gravel (wherever encountered) etc.

### iii) Bulk & Dry Density - IS 2720 (Part 29) : 1975

The weight of soil + container was noted as  $w_1$ . Weight of container alone was noted as  $w_2$ . Then the bulk density of the soil was calculated as below

Bulk Density=  $(w_2 - w_1) / V$ g/ccWhere , V = Volume of soil in ccDry Density= Bulk density / (1+W)g/ccWhere, W = Natural Moisture Content in %

### iv) Natural Moisture Content - IS 2720 (Part 2): 1973

A moisture container is weighed initially  $(w_1)$ . The container is filled with soil sample and weighed with lid  $(w_2)$ . It is then kept over oven with lid removed and maintained at temperature of oven at 105°C for 24 hours. The lid of the container is then replaced and the dry weight found out  $(w_3)$ . The percentage of water content has been calculated using the formula.

$$w = [(w_2 - w_3) / (w_3 - w_1)] * 100$$

#### v) Specific Gravity - IS 2720 (Part 3) : 1980

Specific gravity of soil solids is defined as the weight of given volume of soil solids to the weight of equal volume of distilled water.

Specific gravity is found out using standard specific gravity bottle of 50 ml capacity by weighing empty bottle  $(w_1)$ , bottle + dry soil  $(w_2)$ , bottle + dry soil + water  $(w_3)$ , bottle + water  $(w_4)$ .

Specific gravity of soil = 
$$\frac{(W_2-W_1)}{(W_2-W_1) - (W_3-W_4)}$$

### vi) Direct Shear - IS 2720 (Part 13) : 1986

In this test, soil specimen is confined in a square metal box split into two halves horizontally. Non-Perforated metal plates and porous stones are placed above and below the specimen to prevent any drainage. After applying vertical load, soil is gradually sheared off by applying horizontal force, which makes the two halves of the box move relative to each other. Shear is applied at a constant strain rate and measured in a proving ring. Vertical deformation is measured with dial gauge. Minimum of three specimens are tested and graph drawn with normal stress in 'X' axis and shear stress in 'Y' axis. From the straight-line plot, values of C and Phi are then measured.



### vii) Liquid limit & Plastic limit – IS 2720 (Part 5): 1985 a. Liquid limit

Liquid limit is determined using Casagrande's method. 150 gms of air dried soil is taken in Porcelain Evaporating dish to form uniform paste. A portion of the paste is placed in the cup of liquid limit device and trim it to a depth of 1 cm at the point of maximum thickness. Lift and drop the cup by turning crank at the rate of two revolution per second until the two halves of soil cake come in contact each other for a length of about 12 mm. Number of blows shall be noted and the test was repeated with different moisture at least four more times for blows between 15 and 35. Ploting the relationship between water content (on y-axis) and number of blows (on x-axis) on semi-log graph. The curve obtained is called flow curve. The moisture content corresponding to 25 blows as read from the graph represents the liquid limit.

### b. Plastic limit

About 15 g of oven-dried soil passing through 425  $\mu$  sieve was mixed with sufficient quantity of water to become plastic enough to be easily shaped into a ball. A portion of this ball was rolled on a glass plate with fingers with just sufficient pressure to roll the mass into a thread of uniform diameter of 3mm, and then the soil was re-moulded again into a ball. This process of rolling and remoulding was repeated until the thread starts just crumbling at a diameter of 3mm. The water content of such threads represents the plastic limit.

### **C. Plasticity Index**

It is the difference between liquid limit & plastic limit (i.e.)  $I_{P}$ = LL - PL

### viii) Unconfined Compressive Test- IS 2720 (Part 10) : 1991

Unconfined Compressive strength (qu) is the load per unit is at which an unconfined cylindrical specimen of soil will fail in the axial compression test. The specimen was placed at the mid of the base plate of the load frame (sandwiched between the end plates). Dial gauge was fixed to measure the vertical compression of the specimen. Then load was applied and the readings of proving ring & dial gauge were recorded for every 0.25 mm compression until the failure.

### ix) Consolidation Test- IS 2720 (Part 15) : 1965

### a. Sample Preparation

By means of a hydraulic jack, the sample was carefully ejected out from the tube, so that it intrudes into the ring. During the process, continuous trimming of the specimen has been done from outside of the consolidation ring to reduce friction. Finally the soil sample was trimmed and flushed with the ends of the consolidation ring so that the thickness of soil in the ring shall be greater than the height of consolidation ring. Extruded soil sample was loaded in the same direction relative to stratum as the applied force in the field.

### **b. Test Procedure**

i) After the whole arrangement, the initial dial reading was read. And a 0.05 kg/cm<sup>2</sup> seating pressure was placed on the pan of weight hanger. Then the base plate of the consolidation cell was connected to water reservoir by means of rubber/plastic tube for saturating the soil specimen. The specimen was allowed to saturate for 24 hours. The test is continued with load increments such as 0.125, 0.25, 0.5, 1.0, 2.0, 4.0 kg/cm<sup>2</sup>.



ii) The dial gauge readings were noted after application of each load with a time sequence of 0.25, 1.0, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25, 36, 64, 81,100 minutes and thereafter 24 hours. With the help of the above time sequence, a plot with the specimen thickness against square root of time was plotted. The loads were reduced in stages and time-swelling readings were recorded accordingly.

### 3.2.2. For Rock

#### i) Unconfined compressive strength - IS 9143 : 1979

Unconfined Compressive strength (qu) (uniaxial compressive strength) of a rock sample is when crushed in one direction (uniaxial) without lateral restraint.

Specimen with L/D ratio 2 to 3 was taken and placed between two bearing discs. Load was continuously applied at a constant stress rate such that failure will take place in about 5 to 15 minutes of loading. Stress rate should lie within the limits of 0.5 MPa/s to 1.0 MPa/s. Maximum load was recored on the specimen at failure.

A summary of physical and Engineering properties of Soil & rock core samples were given in Annexure III.

### 3.2.3. Chemical analysis of water samples

Chemical content of water samples collected from the boreholes were determined by utilizing the following tests conforming to IS 2720 (relevant parts):

- i) pH
- ii) Total Dissolved Solids
- iii) Chlorides
- iv) Sulphates

A summary of chemical analysis results for water samples were given in Annexure I.

# 3.3 Geology of the Area

The existing soil types in Bangalore district can be broadly grouped into loamy soil and lateritic soil. Loamy soil type generally occurs on hilly to undulating land slope on granite and gneissic terrain. Laterite soil type occurs on undulating terrain forming plain to gently sloping topography of peninsular gneissic region. It is mainly covered in western parts of Bangalore North and south taluks. Peninsular gneiss covers a major portion of the Bangalore area and is highly migmatitic in nature. Their composition varies from tonalite and trondhjemite to granodiorite and has fine to medium-grained texture and generally grey in colour. In some places they are regularly banded with alternate bands of felsic and mafic minerals and at places the banding is irregular. These are noticed in and around Bangalore. The proposed area is observed as Clayey sand, Clay, Silty sand, sand, Sandy clay at top and soft disintegrated rock / Weathered rock. The underlying hard rock was Gneiss & Granitic Gneiss.

### 3.4 Seismicity

The area under study and its surroundings were seismically active and falls in Seismic **Zone -II** (as per IS 1893 -Part:1).

Recent Earthquake history: Bangalore felt mild tremors on Aug 16th, 2019.



# 4.0 Sub soil profile and strength characteristics of soil

For Corridor 2 –Rail Infrastructure Development Company (Karnataka) Limited, 8 Boreholes were drilled as directed by Engineer incharge.

|       | Barrish IR       |                 |                            | Co-ordinate     |                  | Elevated stretch                        | Depth of         | Water                    |              |
|-------|------------------|-----------------|----------------------------|-----------------|------------------|-----------------------------------------|------------------|--------------------------|--------------|
| S.No. | Bore Hole<br>No. | Chainage<br>No. | Station Name               | X<br>(Latitude) | Y<br>(Longitude) | / At Grade<br>stretch / Gate<br>Stretch | Bore Hole<br>(m) | table<br>Detected<br>(m) | Corridor No. |
| 1     | 13/500           | 13/500          | Chikka Banavara<br>station | 13.074773       | 77.505243        | Elevated                                | 22.5             | NIL                      | Corridor-2   |
| 2     | 12/200           | 12/200          | Mydharhalli<br>station     | 13.06783        | 77.514898        | Elevated                                | 15.0             | 9.0                      | Corridor-2   |
| 3     | 9/300            | 9/300           | Shettyhalli<br>station     | 13.05145        | 77.534511        | Elevated                                | 27.0             | 10.0                     | Corridor-2   |
| 4     | 214/100          | 214/100         | Kanaka Nagar<br>Station    | 13.035395       | 77.611146        | Elevated                                | 33.0             | 15.0                     | Corridor-2   |
| 5     | 211/100          | 211/100         | kaverinagar<br>Station     | 13.013371       | 77.37188         | Elevated                                | 12.0             | 10.5                     | Corridor-2   |
| 6     | 209/800          | 209/800         | Banaswadi<br>Station       | 13.006136       | 77.628426        | Elevated                                | 22.5             | 13.5                     | Corridor-2   |
| 7     | 206/800          | 206/800         | Kasturinagar<br>Station    | 13.004616       | 77.654765        | Elevated                                | 27.0             | 12.0                     | Corridor-2   |
| 8     | 205/100          | 205/100         | Benniganahalli<br>station  | 12.994843       | 77.662819        | Elevated                                | 10.5             | NIL                      | Corridor-2   |

# 4.1 Borehole Details

Backfilling was obtained from 0.0 to 1.5m at top of some boreholes. The over burden strata were classified as Clay, Silt & Sand and composition of Silt, Sand, Clay and Gravel. Following the overburden strata, Hard rock was received. In Refusal strata, Boreholes were advanced by using Rotary drilling machine upto maximum depths of 33.0 m From the samples of the core recovery,drill log,representative samples, wash samples from bore holes, the Rock drilling was given upto drilled depth. The details of strata classification, Core Recovery and RQD obtained in each borehole are as given below.



MPAC PVT LTD

| Borehole No. 13/500                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borehole was drilled upto                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soft Disintegrated Rock obtained between | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rock Drilling between                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 & 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR varies between                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 & 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RQD varies between                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Borehole No. 12/200                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Borehole was drilled upto                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Backfilling obtained between             | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silty Sand obtained between              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5 & 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soft Disintegrated Rock obtained between | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 & 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rock Drilling between                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5 & 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR varies between                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 & 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RQD varies between                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Borehole No. 9/300                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Borehole was drilled upto                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silty Sand obtained between              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soft Disintegrated Rock obtained between | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5 & 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rock Drilling between                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 & 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR varies between                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 & 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RQD varies between                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Borehole No. 214/100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Borehole was drilled upto                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silty Sand obtained between              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soft Disintegrated Rock obtained between | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 & 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rock Drilling between                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 & 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR varies between                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 & 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RQD varies between                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Borehole No. 211/100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Borehole was drilled upto                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Backfilling obtained between             | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0&3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soft Disintegrated Rock obtained between | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 & 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rock Drilling between                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 & 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR varies between                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 & 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RQD varies between                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 & 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          | Borehole was drilled uptoSoft Disintegrated Rock obtained betweenRock Drilling betweenCR varies betweenBorehole No. 12/200Borehole No. 12/200Borehole No. 12/200Borehole No. 12/200Borehole No. 12/200Borehole was drilled uptoBackfilling obtained betweenSilty Sand obtained betweenSoft Disintegrated Rock obtained betweenRock Drilling betweenRop varies betweenBorehole No. 9/300Borehole No. 9/300Borehole No. 9/300Borehole No. 9/300Soft Disintegrated Rock obtained betweenRock Drilling betweenCR varies betweenRock Drilling betweenSoft Disintegrated Rock obtained betweenRock Drilling betweenRop varies betweenRorehole No. 214/100Borehole was drilled uptoSilty Sand obtained betweenRock Drilling betweenCR varies betweenRock Drilling betweenCR varies betweenBorehole No. 211/100Borehole was drilled uptoBackfilling obtained betweenSoft Disintegrated Rock obtained betweenRock Drilling betweenBorehole No. 211/100Borehole was drilled uptoBackfilling obtained betweenSoft Disintegrated Rock obtained betweenRock Drilling betweenCR varies betweenCR varies betweenCR varies betweenCR varies betweenCR varies betweenCR varies betweenSoft Disintegrated Rock | Borehole was drilled upto=Soft Disintegrated Rock obtained between=Rock Drilling between=RQD varies between=Borehole No. 12/200=Borehole was drilled upto=Backfilling obtained between=Silty Sand obtained between=Soft Disintegrated Rock obtained between=RQD varies between=Rock Drilling between=Rock Drilling between=Rorehole No. 9/300=Borehole No. 9/300=Borehole No. 9/300=Soft Disintegrated Rock obtained between=RQD varies between=Rock Drilling between=Soft Disintegrated Rock obtained between=Rock Drilling between=Soft Disintegrated Rock obtained between=Soft Disintegrated Rock obtained between=Rock Drilling between=Rock Drilling between=Soft Disintegrated Rock obtained between=Soft Disintegrated Rock obtained between=Soft Disintegrated Rock obtained between=Soft Disintegrated Rock obtained between=Rock Drilling between=Rorehole No. 211/100=Borehole No. 211/100= <th>Borehole was drilled upto=22.5Soft Disintegrated Rock obtained between=0 &amp; 4.5Rock Drilling between=3 &amp; 53RQD varies between=0 &amp; 53Borehole No. 12/200=15Backfilling obtained between=0 &amp; 1.5Silty Sand obtained between=0 &amp; 1.5Soft Disintegrated Rock obtained between=7.5 &amp; 15CR varies between=7.5 &amp; 15Rock Drilling between=7.5 &amp; 15CR varies between=0 &amp; 7.1Borehole was drilled upto=27Silty Sand obtained between=0 &amp; 7.5CR varies between=0 &amp; 7.5Rock Drilling between=0 &amp; 7.5Soft Disintegrated Rock obtained between=0 &amp; 51Rock Drilling between=0 &amp; 51Borehole No. 214/100=33Silty Sand obtained between=0 &amp; 9Soft Disintegrated Rock obtained between=0 &amp; 60Rock Drilling between=0 &amp; 60Rock Drilling between=0 &amp; 60Borehole No. 211/100=12.0Borehole Was drilled upto=3 &amp; 4.5Rock Drilling obtained between=0 &amp; 33Soft Disintegrated Rock obtained between=0 &amp; 33<tr< th=""></tr<></th> | Borehole was drilled upto=22.5Soft Disintegrated Rock obtained between=0 & 4.5Rock Drilling between=3 & 53RQD varies between=0 & 53Borehole No. 12/200=15Backfilling obtained between=0 & 1.5Silty Sand obtained between=0 & 1.5Soft Disintegrated Rock obtained between=7.5 & 15CR varies between=7.5 & 15Rock Drilling between=7.5 & 15CR varies between=0 & 7.1Borehole was drilled upto=27Silty Sand obtained between=0 & 7.5CR varies between=0 & 7.5Rock Drilling between=0 & 7.5Soft Disintegrated Rock obtained between=0 & 51Rock Drilling between=0 & 51Borehole No. 214/100=33Silty Sand obtained between=0 & 9Soft Disintegrated Rock obtained between=0 & 60Rock Drilling between=0 & 60Rock Drilling between=0 & 60Borehole No. 211/100=12.0Borehole Was drilled upto=3 & 4.5Rock Drilling obtained between=0 & 33Soft Disintegrated Rock obtained between=0 & 33 <tr< th=""></tr<> |



|       | •                                        |   |           |   |
|-------|------------------------------------------|---|-----------|---|
| 1     | Borehole was drilled upto                | = | 22.5      | m |
| 2     | Sandy Silt obtained between              | = | 0 & 12    | m |
| 3     | Soft Disintegrated Rock obtained between | = | 12 & 15   | m |
| 4     | Rock Drilling between                    | = | 15 & 22.5 | m |
| 5     | CR varies between                        | = | 13 & 50   | % |
| 6     | RQD varies between                       | = | 0 & 50    | % |
| 4.1.7 | Borehole No. 206/800                     |   |           |   |
| 1     | Borehole was drilled upto                | = | 27.0      | m |
| 2     | Silty Sand obtained between              | = | 0 & 9     | m |
| 3     | Soft Disintegrated Rock obtained between | = | 9 & 18    | m |
| 4     | Rock Drilling between                    | = | 18 & 27   | m |
| 5     | CR varies between                        | = | 11 & 53   | % |
| 6     | RQD varies between                       | = | 0 & 53    | % |
| 4.1.8 | Borehole No. 205/100                     |   |           |   |
| 1     | Borehole was drilled upto                | = | 10.5      | m |
| 2     | Backfilling obtained between             | = | 0&3       | m |
| 3     | Sandy Silt obtained between              | = | 3 & 6     | m |
| 4     | Rock Drilling between                    | = | 6 & 10.5  | m |
| 5     | CR varies between                        | = | 61 & 71   | % |
| 6     | RQD varies between                       | = | 46 & 67   | % |
|       |                                          |   |           |   |

Borehole No. 209/800

4.1.6



MPAC PVT LTD

# 5 Design & Recommendation

# 5.1 Design Methodology

# I) Pile Capacity:

# a) Piles in Clay Soil: (As per IS:2911-part 1 / section 2 -2010 Annx-B.1)

The ultimate load capacity (Qu) of piles, in kN, Q ult = Qe + Qf Where, Qe - end bearing resistance Qf- skin friction resistance

End bearing resistance:

Qe= Ap x Nc x Cp .....(1) Where,

Ap=cross-sectional area of pile tip, in m<sup>2</sup> Nc = bearing capacity factor, may be taken as 9 cp = average cohesion at pile tip, in kN/m<sup>2</sup>

Skin friction resistance: Qf = $\alpha$  x c x As .....(1) Where,  $\alpha$  = adhesion factor c = average cohesion, inkN/m<sup>2</sup> As = surface area of pile shaft, in m<sup>2</sup>

### b) Piles in Granular Soil: (As per IS:2911-part 1 / section 2 -2010 Annx-B.1)

The ultimate load capacity (Qu) of piles, in kN, Q ult = Qe + Qf Where, Qe - end bearing resistance Qf- skin friction resistance

End bearing resistance:

Qe= Ap x (0.5 x D x  $\gamma$ x N $\gamma$  + P<sub>d</sub> x Nq) .....(2) Where,

Ap- cross-sectional area of pile tip, in m<sup>2</sup>

D - diameter of pile shaft, in m

 $\gamma$  - effective unit weight of the soil at piletip, in kN/m<sup>3</sup>

- $N \gamma$  bearing capacity factors
- Nq- angle of internal friction

 $P_d$  - effective overburden pressure at pile tip,inkN/m<sup>2</sup>



MPAC PVT LTD

Skin friction resistance:  $Qf = K \times P_{di} \times tan (\delta)$  .....(2) Where, K - coefficient of earth pressure  $P_{di}$  - effective overburden pressure for the ith layer, in kN/m<sup>2</sup>  $\delta$ - angle of wall friction between pile and soil

### c) Piles in Rock: (As per IRC : 78-2014 - APEENDIX-5 : CL: 9.1)

The ultimate load capacity (Qu) of piles, in kN, Q ult =  $R_e + R_{af}$ Q allow = ( $R_e/3$ ) + ( $R_{af}/6$ ) Where, Qu- Ultimate capacity of pile socketed into rock, N Q allow - Allowable capacity of pile  $R_e$  - Ultimate end bearing  $R_{af}$  - Ultimate side socket shear

Ultimate end bearing:

 $\begin{array}{l} \mathsf{R}_{e} &= \mathsf{K}_{sp} \ge \mathsf{q}_{c} \ge \mathsf{d}_{f} \ge \mathsf{A}_{b} \\ Where, \\ \mathsf{K}_{sp} \text{-} An \ empirical \ co-efficient \\ \mathsf{q}_{c} &= Average \ UCC \ of \ rock \ core \ below \ base \ of \ pile, \ in \ MPa \\ \mathsf{d}_{f} &= Depth \ factor \\ \mathsf{A}_{b} &= Cross \ sectional \ area \ of \ base \ of \ pile \end{array}$ 

Ultimate side socket shear:

 $R_{af} = A_s \times C_{us}$  *Where,*   $A_s$  -Surface area of socket  $C_{us}$  - Ultimate shear strength of rock along socket length

### d) Pile Head Deflection/Lateral Capacity of Pile: (As per IS:2911-part 1/sec 2-Appendix C)

a) Q (fixed head) =  $Y*12*E_c*I/(L_f*100)^3/1000$ b) Q (free head) =  $Y*3*E_c*I/(L_f*100)^3/1000$ Where, Y - Deflection  $E_c$  - Modulus of elasticity I - Moment of Inertia Lf -Fixity length



# **II) Bearing Capacity:**

# a) For Soil:

As per Geotechnical Engineering Calculations and Rules of Thumb (Second Edition), Bearing capacity can be evaluated as Q=9.6\*NWhere, N=SPT N value

# b) For Rock:

**Method 1:** As per IS 13365:Part-1, Safe Bearing capacity for rock can be calculated based on Rock Mass Rating (RMR).

# i. Uniaxial Compressive Strength of Intact Rock Material

The strength of intact rock material can be considered based on uniaxial compressive strength and point load strength test conducted for rock cores. The UCS/Point Load Strength rating is recommended as per IS:13365 (Part 1) are given below.

| UCS value (MPa) | Point Load<br>Strength value<br>(MPa) | Rating |
|-----------------|---------------------------------------|--------|
| >250            | >8                                    | 15     |
| 100 to 250      | 4 to 8                                | 12     |
| 50 to 100       | 2 to 4                                | 7      |
| 25 to 50        | 1 to 2                                | 4      |
| 10 to 25        | Use of uniaxial                       | 2      |
| 2 to 10         | compressive<br>strength is            | 1      |
| <2              | preferred                             | 0      |

Table: 5.2.1 – Strength of Intact Rock Material & Rating

# ii. Rock Quality Designation (RQD)

RQD is a modified core recovery percentage in which all the pieces of sound core over 10 cm long are counted as recovery and are expressed as a "%" of the length drilled. The RQD rating recommended as per IS:13365 (Part 1) are given below.

| RQD       | Rating |
|-----------|--------|
| 90 to 100 | 20     |
| 75 to 90  | 17     |
| 50 to 75  | 13     |
| 25 to 50  | 8      |
| <25       | 3      |

Table: 5.2.2 – RQD & Rating

# iii.Spacing of Discontinuities

The term discontinuity covers joints, beddings or foliations, shear zones, minor faults/other surfaces of weakness. The linear distance between two adjacent discontinuities should be measured for all sets of discontinuities. The details of ratings as per IS:13365 (Part 1) are given below.



MPAC PVT LTD

|            | Spacing in m | Rating |
|------------|--------------|--------|
| Very wide  | >2           | 20     |
| Wide       | 0.6 to 2     | 15     |
| Moderate   | 0.2 to 0.6   | 10     |
| Close      | 0.06 to 0.2  | 8      |
| Very close | <0.06        | 5      |

Table: 5.2.3 – Spacing of Discontinuities & Rating

### iv.Condition of Discontinuities

This parameter includes roughness of discontinuity surfaces, their separation, length or continuity, weathering of the wall rock or the planes of weakness and infilling (gauge) material. The details of rating as per IS:13365(Part 1) are given below.

| Condition | weathered wall<br>rock, tight and<br>discontinuous, no |    | Slightly rough and<br>moderately to<br>highly weathered<br>wall rock surface,<br>separation <1mm | Slickensided wall<br>rock surface or 1-<br>5 mm thick gauge<br>or 1-5 mm wide<br>opening,<br>continuous<br>discontinuity | 5 mm thick soft<br>gauge 5mm wide<br>continuous<br>discontinuity |
|-----------|--------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Rating    | 30                                                     | 25 | 20                                                                                               | 10                                                                                                                       | 0                                                                |

Table: 5.2.4 – Condition of Discontinuities & Rating

### v.Ground Water Condition

The rate of inflow of ground water, a general condition can be described as completely dry, damp, wet, dripping and flowing. The ratings of above parameters as per IS:13365 (Part 1) are given below

| General<br>description | Completely dry | Damp | Wet | Dripping |
|------------------------|----------------|------|-----|----------|
| Rating                 | 15             | 10   | 7   | 4        |

Table: 5.2.5 – Ground Water Condition & Rating

The rating for ground water condition is considered as 7 which correspond to "Wet" in all cases.

### vi.Orientation of Discontinuities

Orientation of discontinuities means the strike and dip of discontinuities. The strike should be recorded with reference to magnetic north. The dip angle is the angle between the horizontal and the discontinuity plane taken in a direction in which the plane dips.



### vii.Adjustment for joint orientation

The influence of the strike and the dip of the discontinuities are considered with respect to the orientation of tunnel axis or slope face or foundation alignment. The values of adjustment for joint orientation are considered as per IS:13365 (Part 1).

| Strike and dip<br>orientation of<br>joints for |   | Favourable | Fair | Un-Favourable |
|------------------------------------------------|---|------------|------|---------------|
| Tunnels                                        | 0 | -2         | -5   | -10           |
| Raft<br>foundation                             | 0 | -2         | -7   | -15           |

Table: 5.2.6 – Adjustment for Joint orientation & Rating

### Estimation of Rock Mass Rating & Net Safe bearing pressure

The rock mass rating can be determined as an algebraic sum of ratings for all the parameters mentioned above from (i) to (vii). The sum of items (i) to (vii) is referred as Rock Mass Rating.

On the basis of rock mass rating values, the rock mass can be classified as below.

| Rock Mass<br>Rating | Class       | Classification of<br>Rock Mass | q <sub>n</sub> (t/m²) |
|---------------------|-------------|--------------------------------|-----------------------|
| 100 to 81           | I           | Very Good                      | 600 to 448            |
| 80 to 61            | 80 to 61 II |                                | 440 to 228            |
| 60 to 41            | III         | Fair                           | 280 to 151            |
| 40 to 21            | IV          | Poor                           | 145 to 58             |
| <20                 | V           | Very Poor                      | 55 to 40              |

Table: 5.2.7 – RMR Rating & Net Safe bearing pressure

**Method 2:** IS 12070- Pg:7 & 9, Safe Bearing capacity for rock can be computed as  $Q=q_o*N_i$ 

Where,  $q_0$  = Average Compressive strength of rock

 $N_i$  = Empirical coefficient depending on the spacing of discontinuities

Comparing above two methods, Minimum of two values is to be considered as SBC.



MPAC PVT LTD

### 5.2 Computation

### I) Safe capacity of pile:(1000 mm dia pile for BH-13/500 at the depth of 22.5m) For combination of Sand, Clay & Rock layers :

| i) <u>The</u>         | Vertical cap        | acity of pile calcu       | ulates to b       | <u>e</u> :    |                    |                      |        |          |         |      |
|-----------------------|---------------------|---------------------------|-------------------|---------------|--------------------|----------------------|--------|----------|---------|------|
| Q <sub>e(v)</sub>     | =                   | $((Qe_{(1)} + Qe_{(2)}))$ | /2.5) + (R        | Re/3)         |                    |                      |        |          |         |      |
|                       | =                   | ((0+0)/2.5) + 39          | 92.6991           |               |                    |                      | =      | 392.70   | Т       |      |
| Q <sub>f(v)</sub>     | =                   | $((Qf_{(1)} + Qf_{(2)})/$ | 2.5) + (Ra        | af/6)         |                    |                      |        |          |         |      |
|                       | =                   | ((0+236.24)/2.5           | 5) +323.9         | 515           |                    |                      | =      | 418.45   | Т       |      |
| Q <sub>safe (v)</sub> | =                   | $Q_e + Q_f$               |                   |               |                    |                      |        |          |         |      |
|                       | =                   | 392.6991 + 418            | 3.4475            | =             | 811.15             | Т                    | =      | 811      | Т       |      |
| ii) <u>T</u>          | he Uplift cap       | acity of pile calcu       | ulates to b       | e:            |                    |                      |        |          |         |      |
| Q <sub>f (u)</sub>    | =                   | Q <sub>f(v)</sub> * 0.5   |                   | =             | 209.22             | т                    | =      | 209      | т       |      |
| Q <sub>safe</sub> (u) | =                   | (209.22375/3)+            | -(0/3)            | =             | 69.74              | т                    | =      | 70       | т       |      |
| iii) <u>F</u>         | <u>Pile Head De</u> | flection/Lateral C        | <u>apacity of</u> | Pile calculat | tes to be:         |                      |        |          |         |      |
| a)                    | Q (fixed he         | ad)                       | = (               | (Y*12*E*I)/   | $((L_1 + L_f)^*)$  | 1/1 L00              | 000    |          |         |      |
|                       |                     |                           | = (               | (0.5*12*29    | 5804*490           | 9000)/(              | (0+6.6 | 14337)*: | LOO)^3) | /100 |
|                       |                     |                           | = 3               | 30.1          | Т                  |                      |        |          |         |      |
| b)                    | Q (free hea         | ad)                       | = (               | (Y*3*E*I)/(   | $(L_1 + L_f) * 10$ | 00) <sup>3</sup> /10 | 00     |          |         |      |
|                       |                     |                           | = (               | (0.5*3*2958   | 304*4909           | 000)/((              | 0+5.66 | 092)*100 | )^3)/1  | 000  |
|                       |                     |                           | = 1               | 12.0          | Т                  |                      |        |          |         |      |
| II) Safe Bearir       | ng capacity         | y for Soil (BH-           | 13/500            | at the dep    | oth of 1.          | 5m)                  |        |          |         |      |
| Decision              |                     |                           |                   |               |                    |                      |        |          |         |      |

| Bearing capacity (Q) | = | 9.6*N  |   |         |   |         |
|----------------------|---|--------|---|---------|---|---------|
|                      | = | 9.6*50 | = | 480 kPa | = | 48.96 T |

### III) Safe Bearing capacity for Rock (BH-13/500 at the depth of 22.5m)

### Method 1: Based on Rock Mass Rating (RMR) - IS 13365:Part-1:

| Parameter                                           | Value                                                                                                                                                                              |       | Rating |  |  |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--|--|--|--|--|--|
| UCS of Rock (MPa)                                   | 114                                                                                                                                                                                |       |        |  |  |  |  |  |  |
| Rock quality Designation %                          | 114 12   53 13   Moderate 10   as per code 20   Wet 7   Fair -5   57 =   = Fair   = Fair | 13    |        |  |  |  |  |  |  |
| Spacing of discontinuities                          | Moderate                                                                                                                                                                           |       | 10     |  |  |  |  |  |  |
| Conditions of discontinuities                       | as per code                                                                                                                                                                        |       | 20     |  |  |  |  |  |  |
| Ground water condition                              | Wet                                                                                                                                                                                |       | 7      |  |  |  |  |  |  |
| Adjustment for joint orientation                    | Fair                                                                                                                                                                               |       | -5     |  |  |  |  |  |  |
| Total                                               |                                                                                                                                                                                    |       | 57     |  |  |  |  |  |  |
| Classification of rock                              | =                                                                                                                                                                                  | Ι     | II     |  |  |  |  |  |  |
| Classification of rock Mass                         | =                                                                                                                                                                                  | F     | air    |  |  |  |  |  |  |
| Net safe bearing pressure will vary between         | =                                                                                                                                                                                  | 280 t | to 151 |  |  |  |  |  |  |
| Net safe bearing pressure (By Linear interpolation) | =                                                                                                                                                                                  | 259   | 9.63   |  |  |  |  |  |  |
|                                                     | =                                                                                                                                                                                  | 250   | 0.00   |  |  |  |  |  |  |

\* \* \*

\*



#### Method 2: Based on UCS Value (IS: 12070):

| From above two results, SBC is recommended as | = | 250.00     | t/m² |
|-----------------------------------------------|---|------------|------|
|                                               | = | 1140       | t/m² |
|                                               | = | 114*10     |      |
| Bearing capacity for rock (Q)                 | = | $q_o^*N_j$ |      |

### **5.3 Recommendations**

Recommendations are based on the assumption that the soil profile found in the boreholes tested is indicative of the surrounding plot area.

- I) Considering grade of Concrete to be used = M35
- II) Considering concreting is to be done in underwater, take only 75% capacities
- III) Recommended Pile capacities are based on the borehole strata and its strength obtained
- IV) Recommended Pile capacities are given without considering the socketing depth.

Pile vertical capacity, Uplift capacity and lateral capacity for each Borehole with different depths are tabulated as follows.

| BH.No.     | Donth (m) | Dile die (m) | Vertical        | Uplift          | Lateral C  | Capacity (T) |
|------------|-----------|--------------|-----------------|-----------------|------------|--------------|
|            | Depth (m) | Pile dia (m) | capacity<br>(T) | capacity<br>(T) | Fixed Head | Free Head    |
|            | 15.0      | 1.00         | 265.4           | 12.3            | 30.1       | 12.0         |
|            | 15.0      | 1.20         | 429.2           | 16.4            | 40.3       | 16.1         |
| BH-13/500  | 18.0      | 1.00         | 286.0           | 15.7            | 30.1       | 12.0         |
| BII-13/300 | 10.0      | 1.20         | 458.8           | 21.3            | 40.3       | 16.1         |
|            | 22.5      | 1.00         | 811.1           | 69.7            | 30.1       | 12.0         |
|            | 22.5      | 1.20         | 1082.2          | 86.1            | 40.3       | 16.1         |
| BH-12/200  | 15.0      | 1.00         | 664.6           | 45.3            | 26.1       | 10.4         |
| БП-12/200  | 15.0      | 1.20         | 891.8           | 54.4            | 34.9       | 13.9         |
|            | 18.0      | 1.00         | 257.2           | 12.0            | 24.1       | 9.6          |
|            | 18.0      | 1.20         | 409.1           | 14.8            | 32.2       | 12.8         |
| RH 0/200   | 21.0      | 1.00         | 277.8           | 15.4            | 24.1       | 9.6          |
| BH-9/300   | 21.0      | 1.20         | 438.7           | 19.7            | 32.2       | 12.8         |
|            | 24.0      | 1.00         | 548.4           | 26.0            | 24.1       | 9.6          |
|            | 24.0      | 1.20         | 759.7           | 32.4            | 32.2       | 12.8         |
|            | 25.0      | 1.00         | 304.6           | 19.9            | 17.3       | 6.9          |
|            | 25.0      | 1.20         | 477.4           | 26.1            | 23.1       | 9.2          |
| DU 214/100 | 28.0      | 1.00         | 325.1           | 23.3            | 17.3       | 6.9          |
| BH-214/100 | 28.0      | 1.20         | 506.9           | 31.1            | 23.1       | 9.2          |
|            | 33.0      | 1.00         | 706.3           | 52.3            | 17.3       | 6.9          |
|            | 33.0      | 1.20         | 961.5           | 66.0            | 23.1       | 9.2          |
| DU 211/100 | 12.0      | 1.00         | 552.3           | 26.6            | 30.1       | 12.0         |
| BH-211/100 | 12.0      | 1.20         | 757.0           | 31.9            | 40.3       | 16.0         |



|            | Denth (m) |              | Vertical        | Uplift          | Lateral C  | Capacity (T) |
|------------|-----------|--------------|-----------------|-----------------|------------|--------------|
| BH.No.     | Depth (m) | Pile dia (m) | capacity<br>(T) | capacity<br>(T) | Fixed Head | Free Head    |
|            | 15.0      | 1.00         | 236.1           | 8.4             | 17.8       | 7.1          |
|            | 15.0      | 1.20         | 330.0           | 10.1            | 23.8       | 9.5          |
| BH-209/800 | 19.0      | 1.00         | 512.2           | 19.9            | 17.8       | 7.1          |
|            | 19.0      | 1.20         | 709.5           | 24.0            | 23.8       | 9.5          |
|            | 22.5      | 1.00         | 822.8           | 71.7            | 17.8       | 7.1          |
|            | 22.5      | 1.20         | 1082.2          | 86.1            | 23.8       | 9.5          |
|            | 18.0      | 1.00         | 257.0           | 11.9            | 22.0       | 8.8          |
|            | 10.0      | 1.20         | 408.8           | 14.7            | 29.4       | 11.7         |
| BH-206/800 | 22.5      | 1.00         | 287.8           | 17.1            | 22.0       | 8.8          |
| DH-200/800 | 22.5      | 1.20         | 453.1           | 22.1            | 29.4       | 11.7         |
|            | 27.0      | 1.00         | 741.5           | 58.1            | 22.0       | 8.8          |
|            | 27.0      | 1.20         | 993.9           | 71.4            | 29.4       | 11.7         |
|            | 10.5      | 1.00         | 692.8           | 50.0            | 30.1       | 12.0         |
| BH-205/100 | 10.5      | 1.20         | 925.7           | 60.0            | 40.3       | 16.1         |

Table :5.3.1 – Summary of Pile and Lateral capacities

FOR MYRTLE PROJECT AND CONSULTANCY PVT. LTD.

S.PRASATH



# Annexure I (Chemical Analysis for water sample)



# Chemical analysis for water

| S.No. | Bore Hole No. | рН                 | Total Dis | solved Solids    | Chlor  | ride as Cl-  | Sulphate as $SO_4$ - |              |  |
|-------|---------------|--------------------|-----------|------------------|--------|--------------|----------------------|--------------|--|
|       |               |                    | mg/l      | %                | mg/l   | %            | mg/l                 | %            |  |
| 1     | 12/200        | 7.44               | 155       | 0.0155           | 67     | 0.0067       | B.D.L (DL:1)         | B.D.L (DL:1) |  |
| 2     | 9/300         | 7.36               | 158       | 158 0.0158 70 0. |        | 0.0070       | 1.20                 | 0.0001       |  |
| 3     | 214/100       | 7.51               | 165       | 0.0165           | 85     | 0.0085       | 1.10                 | 0.0001       |  |
| 4     | 211/100       | 7.55               | 164       | 0.0164           | 94     | 0.0094       | 1.10                 | 0.0001       |  |
| 5     | 209/800       | 7.46 120 0.0120 63 |           | 63               | 0.0063 | B.D.L (DL:1) | B.D.L (DL:1)         |              |  |
| 6     | 206/800       | 7.40               | 109       | 0.0109           | 54     | 0.0054       | B.D.L (DL:1)         | B.D.L (DL:1) |  |

Table : A.1.1- Chemical Analysis of water

\* BDL - Below Detection Limit

\* DL - Detection Limit



Annexure II (Borelog & Figures)

|               |       |        |                        |         | BOR                                       | ELOG                 | 6 (SOI  | L & RC  | DCK)    |       |      |            |                  |        |         |           | MPAC F   | VT. LTD   | _                 | MP       | AC                   |                               |       |
|---------------|-------|--------|------------------------|---------|-------------------------------------------|----------------------|---------|---------|---------|-------|------|------------|------------------|--------|---------|-----------|----------|-----------|-------------------|----------|----------------------|-------------------------------|-------|
|               |       |        | Ge                     | o-Tec   | hnical Investigat                         | ion w                | orks aı | nd Asso | ociated | worł  | s fo | r Corri    | dor-             | 2 Ba   | ngal    | ore Su    | ıb urb   | an Ra     | ilway             | Proje    | ct                   |                               |       |
|               |       |        | В                      | H.NO:   | BH-13/500                                 |                      |         |         |         |       |      | COF        | RRIDOR           | NO.    |         | : CORR    | IDOR 2   |           |                   |          |                      |                               |       |
|               |       |        | ROAD                   | LEVEL : | -                                         |                      |         |         |         |       |      |            | VATED/<br>ADE/GA |        |         | : ELEV    | ATED     |           |                   |          |                      |                               |       |
|               | DE    | PTH OF | WATER                  | TABLE : | NIL                                       |                      |         |         |         |       |      | DAT        | E OF S           | TART & | FINISH  | 1 : 15-09 | 9-2021 8 | 18-09-2   | 021               |          |                      |                               |       |
|               | BOR   | E HOLE | TERMI                  | NATION: | 22.50 m                                   |                      | -       |         |         |       |      | CO-        | ORDIN            | ATES   |         | : 13.07   | 4773 (L  | atitude), | 77.5052           | 43 (Long | itude)               |                               |       |
|               | Depth | (m)    |                        |         |                                           |                      |         | SPT T   | Test    |       |      |            |                  |        |         |           |          |           |                   |          |                      |                               |       |
|               |       |        | (u                     |         |                                           |                      |         |         |         |       | -    |            |                  | Depth  | Vs N Va | alue      |          |           |                   |          |                      |                               |       |
|               |       |        | /er (r                 |         | 5                                         |                      |         |         |         |       |      |            |                  |        |         |           |          |           | (%)               |          |                      | Bearing<br>capacit            |       |
| j<br>>        | From  | То     | Thickness of Layer (m) |         | Description                               | Profile              | ε       | E       | E       |       |      |            |                  |        |         |           |          |           | Core Recovery (%) |          |                      | Values<br>(t/m <sup>2</sup> ) |       |
| ברת           |       |        | ness                   |         |                                           |                      | -0.15   | - 0.30  | -0.45   | Value |      |            |                  | N      | value   | 5         |          |           | Reco              | (%)      | rks                  |                               |       |
| עבמתרבת דבאבו |       |        | Thick                  | Type    |                                           |                      | 0.0     | 0.15    | 0.30    | N Va  |      | 0<br>0.0 + | 2                | 0      | 40      | 60        | 80       | 100       | Core              | RQD      | Remarks              |                               |       |
|               | 0.0   | 1.5    |                        | SPT     |                                           |                      | 24      | 50/7cm  | Rebound | >50   | İ    | 1.5        |                  |        | +       |           |          |           | -                 | -        | -                    | 48.96                         |       |
|               | 1.5   | 3.0    | 4.5                    | SPT     | Soft Disintegrated Rock                   |                      | 50/10cm | Reb     | ound    | >50   | 1    | 3.0        |                  |        |         |           |          |           | -                 | -        | -                    | 48.96                         |       |
|               | 3.0   | 4.5    |                        | SPT     |                                           |                      | 50/2cm  | Reb     | ound    | >50   | 4.5  | 4.5        |                  |        |         |           |          |           | -                 | -        | -                    | 48.96                         |       |
|               | 4.5   | 6.0    |                        | CORE    |                                           |                      | -       | -       | -       | -     | ł    | 6.0        |                  |        |         |           |          |           | 3                 | NIL      | 2(SP)+3=5cm          | 55.00                         |       |
|               | 6.0   | 7.5    |                        | CORE    |                                           |                      | -       | -       | -       | -     | ł    | 7.5        |                  |        |         |           |          |           | 5                 | NIL      | 5+3=8cm              | 55.00                         |       |
|               | 7.5   | 9.0    |                        | CORE    |                                           |                      | -       | -       | -       | -     | 1    | 9.0        |                  |        |         |           |          |           | 3                 | NIL      | 2+3=5cm              | 55.00                         |       |
|               | 9.0   | 10.5   |                        | CORE    |                                           |                      | _       | -       | -       | _     |      | 10.5       |                  |        |         |           |          |           | 5                 | NIL      | 2+5=7cm              | 55.00                         |       |
|               | 10.5  | 12.0   | 13.5                   | CORE    | Gneiss with Complete                      | Gneiss with Complete |         | _       | -       | _     | -    | Depth      | 12.0             |        |         |           |          |           |                   | 8        | NIL                  | 6+6=12cm                      | 55.00 |
|               | 12.0  | 13.5   | 15.5                   | CORE    | weathering (Grade V)                      |                      | _       |         | _       | _     |      | 13.5       |                  |        |         |           |          |           | 7                 | NIL      | 6+5=11cm             | 55.00                         |       |
|               |       |        |                        |         |                                           |                      |         |         | -       |       | -    | 15.0       |                  |        |         |           |          |           |                   |          | 3+15(SP)             |                               |       |
|               | 13.5  | 15.0   |                        | CORE    |                                           |                      | -       | -       | -       | -     | -    | 16.5       |                  |        |         |           |          |           | 14                | NIL      | +3=21cm              | 55.00                         |       |
|               | 15.0  | 16.5   |                        | CORE    |                                           | _                    |         | -       | -       | -     | -    | -          | 19.5             |        |         |           |          |           |                   | 10       | NIL                  | 8+7(SP)=15cm<br>4+3+4(SP)     | 55.00 |
|               | 16.5  | 18.0   |                        | CORE    |                                           |                      | -       | -       | -       | -     | ł    | 21.0       |                  |        |         |           |          |           | 7                 | NIL      | =11cm                | 55.00                         |       |
|               | 18.0  | 19.5   | 1.5                    | CORE    | Gneiss with High<br>weathering (Grade IV) |                      | -       | -       | -       | -     | ļ    | 22.5       |                  |        |         |           |          |           | 15                | 15       | 12+10=22cm           | 100.00                        |       |
|               | 19.5  | 21.0   | 3.0                    | CORE    | Gneiss with Moderate                      |                      | -       | -       | -       | -     |      | 24.0       |                  |        |         |           |          |           | 48                | 45       | 26+5+20+21<br>=72cm  | 150.00                        |       |
|               | 21.0  | 22.5   | 5.0                    | CORE    | weathering (Grade III)                    |                      | -       | -       | -       | -     |      | 25.5       |                  |        |         |           |          |           | 53                | 53       | 16+17+26+21<br>=80cm | 250.00                        |       |

|               |       |         |                        |           | BOR                                            | E LO    | G (SOI      | L & RC        | ОСК)         |         |       |       |      |                                   |         | МРАС      | PVT. LTD    | -                 | MP       | AC                         |                                                      |
|---------------|-------|---------|------------------------|-----------|------------------------------------------------|---------|-------------|---------------|--------------|---------|-------|-------|------|-----------------------------------|---------|-----------|-------------|-------------------|----------|----------------------------|------------------------------------------------------|
|               |       |         | Ge                     | o-Tec     | hnical Investigat                              | ion w   | orks an     | nd Asso       | ciated       | work    | s fo  | or Co | orri | idor-2 Bangal                     | ore S   | ub urb    | oan Rai     | ilway             | Proje    | ct                         |                                                      |
|               |       |         | E                      | BH.NO:    | BH-12/200                                      |         |             |               |              |         |       |       | CO   | ORRIDOR NO.                       | : COR   | RIDOR 2   |             |                   |          |                            |                                                      |
|               |       |         | ROAD                   | D LEVEL : | -                                              |         |             |               |              |         |       |       |      | EVATED/AT<br>ADE/GATE             | : ELE\  | /ATED     |             |                   |          |                            |                                                      |
|               | DE    | PTH OF  | WATER                  | R TABLE : | 9.00 m                                         |         |             |               |              |         |       |       | DA   | TE OF START & FINIS               | + :20-0 | )9-2021 8 | & 22-09-2   | 021               |          |                            |                                                      |
|               | BOF   | RE HOLE | TERMI                  | INATION:  | 15.00 m                                        |         |             |               |              |         |       |       | CO   | O-ORDINATES                       | : 13.0  | 16783(Lai | titude), 77 | .514898           | (Longitu | de)                        |                                                      |
|               | Depth | n (m)   |                        |           |                                                |         |             | SPT 1         | -<br>est     |         |       |       |      |                                   | - 1     |           |             |                   |          |                            |                                                      |
| Reduced Level | From  | То      | Thickness of Layer (m) | Type      | Description                                    | Profile | 0.0 -0.15 m | 0.15 - 0.30 m | 0.30 -0.45 m | N Value |       | 0.    | 0    | Depth Vs N V<br>N values<br>20 40 | 60      | 80        | 100         | Core Recovery (%) | RQD (%)  | Remarks                    | Bearing<br>capacity<br>Values<br>(t/m <sup>2</sup> ) |
|               | 0.0   | 1.5     | 1.5                    | DS        | Backfilling                                    |         | -           | -             | -            | -       |       |       |      |                                   |         |           |             | -                 | -        | -                          | -                                                    |
|               | 1.5   | 3.0     |                        | UDS       |                                                |         | -           | -             | -            | -       |       | 1.    | 5    |                                   |         |           |             | -                 | -        | -                          | -                                                    |
|               | 3.0   | 3.5     | 3.0                    | SPT       | Red and Yellow colored<br>Silty SAND (SM)      |         | 9           | 14            | 18           | 32      |       | 3.    | 0 +  | <hr/>                             |         |           |             | -                 | -        | -                          | 31.33                                                |
|               | 3.5   | 4.5     |                        | SPT       |                                                |         | 12          | 18            | 24           | 42      |       | 4.    | 5 +  |                                   |         |           |             | -                 | -        | -                          | 41.13                                                |
|               | 4.5   | 6.0     |                        | SPT       |                                                |         | 18          | 27            | 50/7cm       | >50     |       | 6.    | o    |                                   |         |           |             | -                 | -        | -                          | 48.96                                                |
|               | 6.0   | 7.5     | 3.0                    | SPT       | Soft Disintegrated Rock                        |         | 50/4cm      | Reb           | ound         | >50     | Depth | 7.    | 5 -  |                                   |         |           |             | -                 | -        | -                          | 48.96                                                |
|               | 7.5   | 9.0     |                        | CORE      | Gneiss with Complete                           |         | -           | -             | -            | -       | ۵     | 9.    | o  - |                                   |         |           |             | 7                 | NIL      | 2(SP)+4+4=10<br>cm         | 55.00                                                |
|               | 9.0   | 10.5    | 3.0                    | CORE      | weathering (Grade V)                           |         | -           | -             | -            | -       |       | 10.   | 5 +  |                                   |         |           |             | 11                | NIL      | 4+8(SP)+3+1<br>=16cm       | 55.00                                                |
|               | 10.5  | 12.0    | 1.5                    | CORE      | Gneiss with Moderate<br>weathering (Grade III) |         | -           | -             | -            | -       |       | 12.   | ₀ ↓  |                                   |         |           |             | 57                | 39       | 9+3+5+9+24<br>+19+16=85cm  | 190.00                                               |
|               | 12.0  | 13.5    |                        | CORE      | Gneiss with Slight                             |         | -           | -             | -            | -       |       | 13.   | 5 ↓  |                                   |         |           |             | 69                | 65       | 21+6+20+15+<br>14+28=104cm | 250.00                                               |
|               | 13.5  | 15.0    | 3.0                    | CORE      | weathering (Grade II)                          |         | -           | -             | -            | -       |       | 15.   |      |                                   |         |           |             | 76                | 71       | 22+8+20+31<br>+33=114cm    | 250.00                                               |

|               |       |         |                    |         | BOR                                            | E LO    | G (SOI      | L & R(        | ОСК)         |         |       |        |                       |               |               | МРАС Р     | VT. LTD.   | -                 | MP       | AC                                                   |                               |
|---------------|-------|---------|--------------------|---------|------------------------------------------------|---------|-------------|---------------|--------------|---------|-------|--------|-----------------------|---------------|---------------|------------|------------|-------------------|----------|------------------------------------------------------|-------------------------------|
|               |       |         | Ge                 | o-Tec   | hnical Investigat                              | ion w   | vorks an    | d Asso        | ciated       | work    | s for | Corr   | idor-2 B              | angal         | ore Su        | ıb urba    | an Rai     | lway              | Proje    | ct                                                   |                               |
|               |       |         | B                  | H.NO:   | BH-9/300                                       |         |             |               |              |         |       | СС     | RRIDOR NO.            |               | : CORR        | RIDOR 2    |            |                   |          |                                                      |                               |
|               |       |         | ROAD               | LEVEL : | -                                              |         |             |               |              |         |       |        | EVATED/AT<br>ADE/GATE |               | : ELEV        | ATED       |            |                   |          |                                                      |                               |
|               | DE    | PTH OF  | WATER              | TABLE : | 10.00m                                         |         |             |               |              |         |       | DA     | TE OF STAR            | F & FINIS     | H : 24-09     | 9-2021 &   | 28-09-20   | 021               |          |                                                      |                               |
|               | BO    | RE HOLE | TERMI              | NATION: | 27.00 m                                        | 1       |             |               |              |         | r     | СС     | -ORDINATES            | ;             | : 13.05       | 5145 (Lati | itude), 77 | 7.534511          | (Longitu | ude)                                                 | 1                             |
|               | Depth | h (m)   |                    |         |                                                |         |             | SPT           | Test         |         |       |        |                       |               |               |            |            |                   |          |                                                      |                               |
|               |       |         | ayer (m)           |         | Description                                    | Profile |             |               |              |         |       |        | Dep                   | th Vs N V     | 'alue         |            |            | (%)               |          |                                                      | Bearing                       |
| Reduced Level | From  | То      | Thickness of Layer | Type    |                                                |         | 0.0 -0.15 m | 0.15 - 0.30 m | 0.30 -0.45 m | N Value |       | 0      | 20                    | N value       | es<br>60      | 80         | 100        | Core Recovery (%) | RQD (%)  | Remarks                                              | Values<br>(t/m <sup>2</sup> ) |
|               | 0.0   | 1.5     |                    | SPT     |                                                |         | 6           | 5             | 6            | 11      |       | 0.0    | 20                    |               |               |            |            | -                 | -        | -                                                    | 10.77                         |
|               | 1.5   | 3.0     |                    | UDS     |                                                |         | -           | -             | -            | -       |       | 1.5 -  |                       |               |               |            |            | -                 | -        | -                                                    | -                             |
|               | 3.0   | 4.5     | 7.5                | SPT     | Red and Brown colored<br>Silty SAND (SM)       |         | 12          | 18            | 21           | 39      |       | 3.0    |                       |               |               |            |            | -                 | -        | -                                                    | 38.19                         |
|               | 4.5   | 6.0     |                    | SPT     |                                                |         | 15          | 20            | 24           | 44      |       | 4.5 -  |                       | $\rightarrow$ |               |            |            | -                 | -        | -                                                    | 43.08                         |
|               | 6.0   | 7.5     |                    | SPT     |                                                |         | 20          | 28            | 36           | 64      |       | 6.0    |                       | $\checkmark$  |               |            |            | -                 | -        | -                                                    | 48.96                         |
|               | 7.5   | 9.0     |                    | SPT     |                                                |         | 24          | 31            | 50/10cm      | >50     |       | 7.5 -  |                       |               | $\rightarrow$ |            |            | -                 | -        | -                                                    | 48.96                         |
|               | 9.0   | 10.5    | 4.5                | SPT     | Soft Disintegrated Rock                        |         | 25          | 34            | 50/7cm       | >50     |       | 9.0 -  |                       |               | $\sim$        |            |            | -                 | -        | -                                                    | 48.96                         |
|               | 10.5  | 12.0    |                    | SPT     |                                                |         | 50/4cm      | Reb           | ound         | >50     |       | 10.5   |                       |               |               |            |            | -                 | -        | -                                                    | 48.96                         |
|               | 12.0  | 13.5    |                    | CORE    |                                                |         | -           | -             | -            | -       | ء     | 12.0   |                       |               |               |            |            | 11                | NIL      | 7(SP)+5+4<br>=16cm                                   | 55.00                         |
|               | 13.5  | 15.0    |                    | CORE    |                                                |         | -           | -             | -            | -       | Depth | 13.5 - |                       |               |               |            |            | 10                | NIL      | 4+5+6=15cm                                           | 55.00                         |
|               | 15.0  | 16.5    |                    | CORE    |                                                |         | -           | -             | -            | -       |       | 15.0   |                       |               |               |            |            | 17                | NIL      | 5+6+5+9<br>=25cm                                     | 55.00                         |
|               | 16.5  | 18.0    | 9.0                | CORE    | Gneiss with Complete<br>weathering (Grade V)   |         | -           | -             | -            | -       |       | 16.5   |                       |               |               |            |            | 12                | NIL      | =23cm<br>14(SP)+4<br>=18cm                           | 55.00                         |
|               | 18.0  | 19.5    |                    | CORE    |                                                |         | -           | -             | -            | -       |       | 18.0   |                       |               |               |            |            | 25                | NIL      | =18cm<br>5+6+4+22(SP)<br>=37cm                       | 55.00                         |
|               | 19.5  | 21.0    |                    | CORE    |                                                |         | -           | -             | -            | -       |       | 19.5   |                       |               |               |            |            | 50                | NIL      | 7+8+8+4+4<br>+4+4+3+3                                | 55.00                         |
|               | 21.0  | 22.5    |                    | CORE    |                                                |         | -           | -             | -            | -       |       | 21.0   |                       |               |               |            |            | 48                | 35       | +30(SP)=75cm<br>5+6+10+18+9<br>+14+10=72cm           | 200.00                        |
|               | 22.5  | 24.0    | 4.5                | CORE    | Gneiss with Moderate<br>weathering (Grade III) |         | -           | -             | -            | -       |       | 22.5   |                       |               |               |            |            | 61                | 49       | 13+14+11+7<br>+11+7+5+25<br>=92cm                    | 230.00                        |
|               | 24.0  | 25.5    |                    | CORE    |                                                |         | -           | -             | -            | -       |       | 24.0   |                       |               |               |            |            | 57                | 51       | =92cm<br>5+4(SP)+35<br>+14+12+15<br>=85cm            | 230.00                        |
|               | 25.5  | 27.0    | 1.5                | CORE    | Gneiss with Complete<br>weathering (Grade V)   |         | -           | -             | -            | -       |       | 23.3   |                       |               |               |            |            | 55                | 8        | =85011<br>12+4+5+6+7+<br>5+5+6+20(SP)<br>+4+3+6=83cm |                               |

|               |       |         |                        |         | BOR                                            | E LOO                                  | G (SO   | IL & RC    | ОСК)         |       |                     |      |                       |          | МРАС Р   | VT. LTD     | -                 | MP       | AC                                   |                                                     |
|---------------|-------|---------|------------------------|---------|------------------------------------------------|----------------------------------------|---------|------------|--------------|-------|---------------------|------|-----------------------|----------|----------|-------------|-------------------|----------|--------------------------------------|-----------------------------------------------------|
|               |       |         | Ge                     | o-Tec   | chnical Investigat                             | ion w                                  | orks a  | nd Asso    | ociated      | work  | s for Co            | orri | idor-2 Bangal         | ore Sı   | ıb urb   | an Ra       | ilway             | Proje    | ect                                  |                                                     |
|               |       |         | B                      | H.NO:   | BH-214/100                                     |                                        |         |            |              |       |                     | CO   | RRIDOR NO.            | : CORR   | IDOR 2   |             |                   |          |                                      |                                                     |
|               |       |         | ROAD                   | LEVEL : | -                                              |                                        |         |            |              |       |                     |      | EVATED/AT<br>ADE/GATE | : ELEV   | ATED     |             |                   |          |                                      |                                                     |
|               | DE    | PTH OF  | WATER                  | TABLE : | 15.00m                                         |                                        |         |            |              |       |                     | DA   | TE OF START & FINIS   | H :16-09 | 9-2021 8 | 20-09-2     | 021               |          |                                      |                                                     |
|               | BOF   | RE HOLE | TERMI                  | NATION: | 33.00 m                                        |                                        | 1       |            |              |       |                     | CO   | ORDINATES             | : 13.03  | 5395 (Li | atitude), 7 | 7.61114           | 6 (Longi | tude)                                | 1                                                   |
|               | Depth | n (m)   |                        |         |                                                |                                        |         | SPT 1      | est          |       |                     |      |                       |          |          |             |                   |          |                                      |                                                     |
| Keaucea Level | From  | То      | Thickness of Layer (m) | e       | Description                                    | Profile                                | -0.15 m | 5 - 0.30 m | 0.30 -0.45 m | Value |                     |      | Depth Vs N V          |          |          |             | Core Recovery (%) | RQD (%)  | Remarks                              | Bearing<br>capacit<br>Values<br>(t/m <sup>2</sup> ) |
| Keo           |       |         | Thic                   | Туре    |                                                |                                        | 0.0     | 0.15       | 0.3          | z     | 0.                  | 0    | 20 40                 | 60       | 80       | 100         | Co                | RQI      | Rer                                  |                                                     |
|               | 0.0   | 1.5     |                        | SPT     | -                                              |                                        | 4       | 5          | 6            | 11    | 1.                  |      |                       |          |          |             | -                 | -        | -                                    | 10.77                                               |
|               | 1.5   | 3.0     |                        | SPT     | -                                              |                                        | 6       | 8          | 10           | 18    |                     |      |                       |          |          |             | -                 | -        | -                                    | 17.63                                               |
|               | 3.0   | 4.5     | 9.0                    | SPT     | Yellow and Brown colored                       | w and Brown colored<br>Silty SAND (SM) |         |            | 11           | 20    | 3.                  |      |                       |          |          |             | -                 | -        | -                                    | 19.58                                               |
|               | 4.5   | 6.0     |                        | SPT     | SIITY SAND (SM)                                |                                        | 11      | 12         | 14           | 26    | 4.                  |      |                       |          |          |             | -                 | -        | -                                    | 25.46                                               |
|               | 6.0   | 7.5     |                        | SPT     | _                                              |                                        | 14      | 17         | 20           | 37    | 6.                  |      |                       |          |          |             | -                 | -        | -                                    | 36.23                                               |
|               | 7.5   | 9.0     |                        | SPT     |                                                |                                        | 26      | 30         | 34           | 64    | 7.                  | 5    | X                     |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 9.0   | 10.5    |                        | SPT     |                                                |                                        | 40      | 50/10cm    | Rebound      | >50   | 9.                  | 0  - |                       | $\geq$   |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 10.5  | 12.0    |                        | SPT     |                                                |                                        |         | Rebound    |              | >50   | 10.                 | 5  - |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 12.0  | 13.5    |                        | SPT     |                                                |                                        |         | Rebound    |              | >50   | 12.                 | 0 +  |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 13.5  | 15.0    |                        | SPT     |                                                |                                        |         | Rebound    |              | >50   | 13.                 | 5 -  |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 15.0  | 16.5    | 12.0                   | SPT     | Soft Disintegrated Rock                        |                                        |         | Rebound    |              | >50   | <b>Dept</b><br>15.1 | 0 -  |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 16.5  | 18.0    |                        | SPT     |                                                |                                        |         | Rebound    |              | >50   | <b>ق</b> 16.        | 5 -  |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 18.0  | 19.5    |                        | SPT     | -                                              |                                        |         | Rebound    |              | >50   | 18.                 | 0 -  |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 19.5  | 21.0    |                        | SPT     |                                                |                                        |         | Rebound    |              | >50   | 19.                 | 5  - |                       |          |          |             | -                 | -        | -                                    | 48.96                                               |
|               | 21.0  | 22.5    |                        | CORE    |                                                |                                        | -       | -          | -            | -     | 21.                 | 0 +  |                       |          |          |             | 6                 | NIL      | 4+2+3 = 9cm                          | 55.00                                               |
|               | 22.5  | 24.0    |                        | CORE    |                                                |                                        |         |            | -            | -     | 22.                 | 5  - |                       |          |          |             | 6                 | NIL      | 5+4 = 9cm                            | 55.00                                               |
|               | 24.0  | 25.5    | 7.5                    | CORE    | Gneiss with Complete                           |                                        | -       | -          | -            | -     | 24.                 | 0  - |                       |          |          |             | 7                 | NIL      | 4+3+4=11cm                           | 55.00                                               |
|               | 25.5  | 27.0    |                        | CORE    | weathering (Grade V)                           |                                        | _       | _          | -            | -     | 25.                 | 5  - |                       |          |          |             | 7                 | NIL      | 4+3+4=11cm                           | 55.00                                               |
|               | 27.0  | 28.5    |                        | CORE    | -                                              |                                        | -       | _          | -            | -     | 27.                 | 0 +  |                       |          |          |             | 12                | NIL      | 5+7+6=18cm                           | 55.00                                               |
|               | 28.5  | 30.0    |                        | CORE    |                                                |                                        | -       | -          | -            | -     | 28.                 | 5 +  |                       |          |          |             | 55                | 55       | 18+13+11+10<br>+10+21=83cm           | 140.00                                              |
|               | 30.0  | 31.5    | 4.5                    | CORE    | Gneiss with Moderate<br>weathering (Grade III) |                                        | -       | -          | -            | -     | 30.<br>31.          |      |                       |          |          |             | 60                | 60       | 10+10+10+11<br>+15+12+12+10<br>=90cm | 140.00                                              |
|               | 31.5  | 33.0    |                        | CORE    | ]                                              |                                        | -       | -          | -            | -     | 33.                 |      |                       |          |          |             | 52                | 52       | 14+19+14+10+<br>10+11=78cm           | 140.00                                              |

|               |       |         |                        |           | BOR                                          | E LOG   | (SOI        | :L & RC       | ОСК)         |         |       |              |                           |              | MPAC      | PVT. LTD.   | ~                 | MP       | AC                                              |                                                      |
|---------------|-------|---------|------------------------|-----------|----------------------------------------------|---------|-------------|---------------|--------------|---------|-------|--------------|---------------------------|--------------|-----------|-------------|-------------------|----------|-------------------------------------------------|------------------------------------------------------|
|               |       |         | Ge                     | o-Tec     | hnical Investigat                            | ion we  | orks a      | nd Asso       | ciated       | work    | s fo  | r Co         | rridor–2 Ban <u>o</u>     | alore S      | ub urb    | an Rai      | lway              | Proje    | ct                                              |                                                      |
|               |       |         | E                      | BH.NO:    | BH-211/100                                   |         |             |               |              |         |       |              | CORRIDOR NO.              | : COF        | RRIDOR 2  |             |                   |          |                                                 |                                                      |
|               |       |         | ROAI                   | D LEVEL : | -                                            |         |             |               |              |         |       |              | ELEVATED/AT<br>GRADE/GATE | : ELE        | VATED     |             |                   |          |                                                 |                                                      |
|               | DE    | PTH OF  | WATER                  | R TABLE : | 10.5 m                                       |         |             |               |              |         |       |              | DATE OF START & FI        | NISH : 08-   | 09-2021 8 | & 09-09-20  | 021               |          |                                                 |                                                      |
|               | BOF   | RE HOLE | E TERM                 | INATION:  | 12.00 m                                      |         |             |               |              |         |       |              | CO-ORDINATES              | : 13.        | 013371(La | atitude), 7 | 7.37188           | (Longitu | de)                                             |                                                      |
|               | Depth | ו (m)   | 6                      |           |                                              |         |             | SPT T         | est          |         | -     |              | Depth Vs                  | N Value      |           |             |                   |          |                                                 |                                                      |
| Reduced Level | From  | То      | Thickness of Layer (m) | Туре      | Description                                  | Profile | 0.0 -0.15 m | 0.15 - 0.30 m | 0.30 -0.45 m | N Value |       | 0.0          | 0 20 <b>N valu</b>        | <b>es</b> 60 | 80        | 100         | Core Recovery (%) | RQD (%)  | Remarks                                         | Bearing<br>capacity<br>Values<br>(t/m <sup>2</sup> ) |
|               | 0.0   | 1.5     |                        | DS        |                                              |         | -           | -             | -            | -       |       | 1.5          | -                         |              |           |             | -                 | -        | -                                               | -                                                    |
|               | 1.5   | 3.0     | 3.0                    | DS        | Backfilling                                  |         | -           | -             | -            | -       |       | 3.0          |                           |              |           |             | -                 | -        | -                                               | -                                                    |
|               | 3.0   | 4.5     | 1.5                    | SPT       | Soft Disintegrated Rock                      |         |             | Rebound       |              | >50     |       | 4.5          |                           | •            |           |             | -                 | -        | -                                               | 48.96                                                |
|               | 4.5   | 6.0     |                        | CORE      |                                              |         | -           | -             | -            | -       | Ē     | 6.0          |                           |              |           |             | 7                 | NIL      | 4+3+4=11cm                                      | 55.00                                                |
|               | 6.0   | 7.5     | 3.0                    | CORE      | Gneiss with Complete<br>weathering (Grade V) |         | -           | -             | -            | -       | Depth | 7.5<br>9.0   |                           |              |           |             | 11                | NIL      | 3+4+5+4<br>=16cm                                | 55.00                                                |
|               | 7.5   | 9.0     |                        | CORE      |                                              |         | -           | -             | -            | -       | 1     | 10.5         |                           |              |           |             | 63                | 45       | =16cm<br>19+16+9+33+<br>9 +8=94cm               | 100.00                                               |
|               | 9.0   | 10.5    | 4.5                    | CORE      | Gneiss with Moderate                         |         | -           | -             | -            | -       | 1     | 12.0         |                           |              |           |             | 54                | 44       | 9 +8=94cm<br>24+7+15+8+<br>10 +17=81cm          | 100.00                                               |
|               | 10.5  | 12.0    |                        | CORE      | weathering (Grade III)                       |         | -           | -             | -            | -       |       | 13.5<br>15.0 |                           |              |           |             | 69                | 48       | 10+17=81cm<br>9+8+12+8+7<br>+20+21+19<br>=104cm | 110.00                                               |

|               |       |         |            |         | BOR                                            | E LO   | G (SOI   | L & RC  | OCK)       |       |   |                        |                     |             |               |            | MPAC     | PVT. LTD    | -                 | MP       | AC                          |                     |
|---------------|-------|---------|------------|---------|------------------------------------------------|--------|----------|---------|------------|-------|---|------------------------|---------------------|-------------|---------------|------------|----------|-------------|-------------------|----------|-----------------------------|---------------------|
|               |       |         | Ge         | o-Teo   | chnical Investigat                             | ion v  | works ar | nd Asso | ociated    | work  | s | for Corr               | idor-2              | 2 Ban       | galo          | ore S      | ub urt   | oan Ra      | ilway             | Proje    | ect                         |                     |
|               |       |         | В          | H.NO:   | BH-209/800                                     |        |          |         |            |       |   |                        | RRIDOR              |             |               | : COR      | RIDOR 2  |             |                   |          |                             |                     |
|               |       |         | ROAD       | LEVEL : | -                                              |        |          |         |            |       |   |                        | EVATED/A<br>ADE/GAT |             |               | : ELEV     | ATED     |             |                   |          |                             |                     |
|               | DE    | PTH OF  | WATER      | TABLE : | 13.50 m                                        |        |          |         |            |       |   | DA                     | TE OF ST            | ART & F     | INISH         | : 22-0     | 9-2021 8 | & 25-09-2   | 021               |          |                             |                     |
|               | BOF   | RE HOLE | TERMI      | NATION: | 22.50 m                                        |        |          |         |            |       | 1 | CC                     | -ORDINA             | TES         |               | : 13.0     | 06136 (L | atitude), 7 | 77.62842          | 6 (Longi | itude)                      | 1                   |
|               | Depth | ı (m)   |            |         |                                                |        |          | SPT 1   | est        |       |   |                        |                     |             |               |            |          |             |                   |          |                             |                     |
|               |       |         | Ē          |         |                                                |        |          |         |            |       |   |                        | 1                   | Depth V     | s N Va        | lue        |          |             |                   |          |                             | Bearing             |
| -             |       |         | of Layer ( |         | Description                                    | Profil | e        | _       |            |       |   |                        |                     |             |               |            |          |             | Core Recovery (%) |          |                             | capacity<br>Values  |
| Leve          | From  | То      | s of L     |         |                                                |        | E 2      | 0.30 m  | 45 m       |       |   |                        |                     | Ν.          | values        |            |          |             | cover             |          | 10                          | (t/m <sup>2</sup> ) |
| Reduced Level |       |         | Thickness  | e       |                                                |        | 0 -0.15  | 1       | 0.30 -0.45 | Value |   | 0                      | 20                  |             | 40            | <b>6</b> 0 | 80       | 100         | re Re             | (%) Q    | Remarks                     |                     |
| Re            |       |         | Ē          | Type    |                                                |        | ö        | 0.15    |            | z     |   | 0.0                    |                     |             |               |            |          | 100         |                   | RQD      |                             |                     |
|               | 0.0   | 1.5     |            | SPT     | -                                              |        | 5        | 6       | 7          | 13    |   | 1.5                    |                     |             |               |            |          |             | -                 | -        | -                           | 12.73               |
|               | 1.5   | 3.0     |            | SPT     | -                                              |        | 7        | 9       | 10         | 19    |   | 3.0                    | 1                   |             |               |            |          |             | -                 | -        | -                           | 18.60               |
|               | 3.0   | 4.5     |            | SPT     | -                                              |        | 9        | 10      | 11         | 21    |   | 4.5                    | *                   | $\setminus$ |               |            |          |             | -                 | -        | -                           | 20.56               |
|               | 4.5   | 6.0     | 12.0       | SPT     | Yellow and Brown colored                       |        | 11       | 12      | 14         | 26    |   | 6.0<br>7.5             |                     |             |               |            |          |             | -                 | -        | -                           | 25.46               |
|               | 6.0   | 7.5     |            | SPT     | 'ellow and Brown colored<br>Sandy SILT (ML)    |        | 13       | 14      | 16         | 30    |   | 9.0                    |                     |             |               |            |          |             | -                 | -        | -                           | 29.38               |
|               | 7.5   | 9.0     |            | SPT     | _                                              |        | 14       | 15      | 17         | 32    |   | 10.5                   |                     |             |               |            |          |             | -                 | -        | -                           | 31.33               |
|               | 9.0   | 10.5    |            | SPT     | _                                              |        | 10       | 17      | 18         | 35    |   | <b>ਦ</b> 12.0          |                     |             |               |            |          |             | -                 | -        | -                           | 34.27               |
|               | 10.5  | 12.0    |            | SPT     |                                                |        | 15       | 20      | 27         | 47    | 1 | <b>Ho</b> 12.0<br>13.5 |                     |             | $\rightarrow$ |            |          |             | -                 | -        | -                           | 46.02               |
|               | 12.0  | 13.5    | 3.0        | SPT     | Soft Disintegrated Rock                        |        | 50/10cm  | Reb     | ound       | >50   |   | 15.0                   |                     |             |               |            |          |             | -                 | -        | -                           | 48.96               |
|               | 13.5  | 15.0    | 5.0        | SPT     | Sort Disintegrated ROCK                        |        | 50/12cm  | Reb     | ound       | >50   |   | 16.5                   |                     |             |               |            |          |             | -                 | -        | -                           | 48.96               |
|               | 15.0  | 16.5    | 1.5        | CORE    | Gneiss with Complete<br>weathering (Grade V)   |        | -        | -       | -          | -     |   | 18.0                   |                     |             |               |            |          |             | 13                | NIL      | 2+2+3+2+3+3<br>+4=19cm      | 55.00               |
|               | 16.5  | 18.0    | 1.5        | CORE    | Gneiss with High<br>weathering (Grade IV)      |        | -        | -       | -          | -     | 1 | 19.5                   |                     |             |               |            |          |             | 45                | 23       | 13+10+8+7+11<br>+8+6+5=68cm | 80.00               |
|               | 18.0  | 19.5    | 1.5        | CORE    | Gneiss with Moderate<br>weathering (Grade III) |        | -        | -       | -          | -     | Ī | 21.0                   |                     |             |               |            |          |             | 43                | 33       | 23+8+16+11<br>+7=65cm       | 120.00              |
|               | 19.5  | 21.0    |            | CORE    | Gneiss with High<br>weathering (Grade IV)      |        | -        | -       | -          | -     | İ | 22.5                   |                     |             |               |            |          |             | 34                | 22       | 5+7+6+11+12<br>+10=51cm     | 100.00              |
|               | 21.0  | 22.5    | 3.0        | CORE    | Gneiss with Moderate<br>weathering (Grade III) |        | -        | -       | -          | -     |   | 24.0                   |                     |             |               |            |          |             | 50                | 50       | 75cm                        | 120.00              |

|               |       |         |                    |         | BOR                                          | EL                                       | .00   | 6 (SOI  | L & RC  | ОСК)       |       |       |            |                        |                       | MPAC      | PVT. LTD.   | -                    | MP      | AC                                       |                               |
|---------------|-------|---------|--------------------|---------|----------------------------------------------|------------------------------------------|-------|---------|---------|------------|-------|-------|------------|------------------------|-----------------------|-----------|-------------|----------------------|---------|------------------------------------------|-------------------------------|
|               |       |         | Ge                 | o-Tec   | hnical Investigat                            | ion                                      | w     | orks ar | nd Asso | ciated     | work  | s fo  | or Cori    | idor-2 Bang            | alore S               | ub urb    | oan Rai     | ilway                | Proje   | ct                                       |                               |
|               |       |         | В                  | H.NO:   | BH-206/800                                   |                                          |       |         |         |            |       |       | C          | ORRIDOR NO.            | : COF                 | RRIDOR 2  |             |                      |         |                                          |                               |
|               |       |         | ROAD               | LEVEL : | -                                            |                                          |       |         |         |            |       |       |            | EVATED/AT<br>RADE/GATE | : ELE                 | VATED     |             |                      |         |                                          |                               |
|               | DE    | PTH OF  | WATER              | TABLE : | 12.00m                                       |                                          |       |         |         |            |       |       |            | ATE OF START & FIN     | ISH :11-              | 09-2021 8 | & 14-09-20  | 021                  |         |                                          |                               |
|               | BOF   | RE HOLE | TERMI              | NATION: | 27.00 m                                      |                                          |       | 1       |         |            |       |       | C          | O-ORDINATES            | : 13.                 | 004616 (L | atitude), 7 | 77.65476             | 5 (Long | itude)                                   |                               |
|               | Depth | n (m)   |                    |         |                                              |                                          |       |         | SPT T   | est        |       |       |            |                        |                       |           |             |                      |         |                                          |                               |
|               |       |         | (L                 |         |                                              |                                          |       |         |         |            |       |       |            | Depth Vs               | Value                 |           |             |                      |         |                                          |                               |
|               |       |         | ayer (             |         | Description                                  | Pro                                      | ofile |         |         |            |       |       |            |                        |                       |           |             | (%)                  |         |                                          | Bearing<br>capacity<br>Values |
| Reduced Level | From  | То      | Thickness of Layer |         |                                              |                                          |       | E       | 0.30 m  | 5 m        |       |       |            |                        |                       |           |             | Recovery (%)         |         |                                          | (t/m <sup>2</sup> )           |
| nced          |       |         | knes               | e       |                                              |                                          |       | -0.15   |         | 0.30 -0.45 | Value |       |            | N va                   | ues                   |           |             | e Rec                | (%) (   | Remarks                                  |                               |
| Red           |       |         | Thio               | Туре    |                                              |                                          |       | 0.0     | 0.15    | 0.3(       | z     |       | (<br>0.0 - | 20 40                  | 60                    | 80        | 100         | Core                 | RQD     | Ren                                      |                               |
|               | 0.0   | 1.5     |                    | SPT     |                                              |                                          |       | 4       | 5       | 7          | 12    |       | 1.5        |                        |                       |           |             | -                    | -       | -                                        | 11.75                         |
|               | 1.5   | 3.0     |                    | SPT     |                                              | low and Brown colored<br>Silty SAND (SM) |       | 5       | 6       | 8          | 14    |       | 3.0        |                        |                       |           |             | -                    | -       | -                                        | 13.71                         |
|               | 3.0   | 4.5     | 9.0                | SPT     | Yellow and Brown colored                     |                                          |       | 14      | 18      | 21         | 39    |       | 4.5        |                        |                       |           |             | -                    | -       | -                                        | 38.19                         |
|               | 4.5   | 6.0     | 510                | SPT     | Silty SAND (SM)                              |                                          |       | 17      | 21      | 25         | 46    |       | 6.0        | \                      |                       |           |             | -                    | -       | -                                        | 45.04                         |
|               | 6.0   | 7.5     |                    | SPT     |                                              |                                          |       | 20      | 27      | 30         | 57    |       | 7.5        |                        | $\mathbf{\mathbf{A}}$ |           |             | -                    |         | -                                        | 48.96                         |
|               | 7.5   | 9.0     |                    | SPT     |                                              |                                          |       |         | Rebound |            | >50   |       | 9.0        |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 9.0   | 10.5    |                    | SPT     |                                              |                                          |       |         | Rebound |            | >50   |       | 10.5       |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 10.5  | 12.0    |                    | SPT     |                                              |                                          |       |         | Rebound |            | >50   |       | 12.0       |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 12.0  | 13.5    |                    | SPT     |                                              |                                          |       |         | Rebound |            | >50   | Depth | 13.5       |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 13.5  | 15.0    | 9.0                | SPT     | Soft Disintegrated Rock                      |                                          |       |         | Rebound |            | >50   | -     | 15.0       |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 15.0  | 16.5    |                    | SPT     |                                              |                                          |       |         | Rebound |            | >50   |       | 16.5       |                        |                       |           |             | -                    | -       | -                                        | 48.96                         |
|               | 16.5  | 18.0    |                    | SPT     | Gneiss with Complete<br>weathering (Grade V) |                                          |       | Rebound |         | >50        |       | 18.0  |            |                        |                       |           | -           | _                    | -       | 48.96                                    |                               |
|               | 18.0  | 19.5    |                    | CORE    |                                              | -                                        | -     | -       | -       |            | 19.5  |       |            |                        |                       | 12        | NIL         | 5+9+4=18cm           | 55.00   |                                          |                               |
|               | 19.5  | 21.0    | 4.5                | CORE    |                                              | -                                        | -     | -       | -       |            | 21.0  |       |            |                        |                       | 11        | NIL         | 4+3+4<br>+6=17cm     | 55.00   |                                          |                               |
|               | 21.0  | 22.5    |                    | CORE    |                                              | -                                        | -     | -       | -       |            | 22.5  |       |            |                        |                       | 22        | NIL         | 4+6+5+8+6<br>+4=33cm | 55.00   |                                          |                               |
|               | 22.5  | 24.0    |                    | CORE    |                                              |                                          |       | -       | -       | -          | -     |       | 24.0       |                        |                       |           |             | 53                   | 53      | 18+16+11+10<br>+10+15=80cm               | 150.00                        |
|               | 24.0  | 25.5    | 4.5                | CORE    | Gneiss with Moderate                         |                                          |       | -       | -       | -          | -     |       | 25.5       |                        |                       |           |             | 51                   | 45      | +10+15=80cm<br>22+10+11+13<br>+9+12=77cm | 150.00                        |
|               | 25.5  | 27.0    | -                  | CORE    | weathering (Grade III)                       |                                          |       |         | -       | _          | _     |       | 27.0       |                        |                       |           |             | 47                   | 47      | +9+12=77cm<br>21+10+14+10<br>+15=70cm    | 150.00                        |

|               |       |         |           |         | BOR                                         | E LOO   | G (SOI  | L & R(  | ОСК)    |         |       |       |                          |         |         | MPAC     | PVT. LTI  | D. <              | MP       | AC                               |                     |
|---------------|-------|---------|-----------|---------|---------------------------------------------|---------|---------|---------|---------|---------|-------|-------|--------------------------|---------|---------|----------|-----------|-------------------|----------|----------------------------------|---------------------|
|               |       |         | Ge        | o-Tec   | hnical Investigat                           | ion w   | orks ar | nd Asso | ciated  | work    | s fo  | r Cor | ridor–2 Bar              | galo    | ore Su  | ıb urb   | an Ra     | ailway            | Proje    | ct                               |                     |
|               |       |         | В         | H.NO:   | BH-205/100                                  |         |         |         |         |         |       |       | ORRIDOR NO.              |         | : CORF  | IDOR 2   |           |                   |          |                                  |                     |
|               |       |         | ROAD      | LEVEL : | -                                           |         |         |         |         |         |       |       | LEVATED/AT<br>GRADE/GATE |         | : ELEV  | ATED     |           |                   |          |                                  |                     |
|               | DEI   | PTH OF  | WATER     | TABLE : | NIL                                         |         |         |         |         |         |       | C     | OATE OF START &          | FINISH  | : 10-0  | 9-2021 8 | & 13-09-  | 2021              |          |                                  |                     |
|               | BOR   | RE HOLE | TERMI     | NATION: | 10.50 m                                     |         |         |         |         |         |       | C     | O-ORDINATES              |         | : 12.99 | 94843 (L | atitude), | 77.66281          | 9 (Longi | tude)                            |                     |
|               | Depth | (m)     |           |         |                                             |         |         | SPT -   | Test    |         |       |       | Depth                    | /s N Va | alue    |          |           |                   |          |                                  |                     |
|               |       |         | Layer (m) |         | Description                                 | Profile |         |         |         |         |       |       |                          |         |         |          |           | (%)               |          |                                  | Bearing<br>capacity |
| Reduced Level | From  | То      | of        |         | Description                                 | rionie  | -0.15 m | 0.30 m  | -0.45 m | ər      |       |       |                          |         |         |          |           | Core Recovery (%) | (%)      | ş                                | Values<br>(t/m²)    |
| Reduce        |       |         | Thickness | Type    |                                             |         | 0-0.0   | 0.15 -  | 0.30 -( | N Value |       | 0.0   | 0 20 N va                | lues    | 60      | 80       | 100       | Core R            | RQD (°   | Remarks                          |                     |
|               | 0.0   | 1.5     | 2.0       | 5.6     |                                             |         | -       | -       | -       | -       |       | 1.5   |                          |         |         |          |           | -                 | -        | -                                |                     |
|               | 1.5   | 3.0     | 3.0       | DS      | Backfilling                                 |         | -       | -       | -       | -       |       | 3.0   |                          |         |         |          |           | -                 | -        | -                                |                     |
|               | 3.0   | 4.5     | 2.0       | SPT     | Yellow and Brown colored                    |         | 21      | 50/8cm  | Rebound | >50     | 1     | 4.5   |                          | •       |         |          |           | -                 | -        | -                                | 48.96               |
|               | 4.5   | 6.0     | 3.0       | SPT     | Sandy SILT (ML)                             |         | 50/4cm  | Reb     | ound    | >50     | Depth | 6.0   |                          |         |         |          |           | -                 | -        | -                                | 48.96               |
|               | 6.0   | 7.5     | 3.0       | CORE    | Gneiss with Moderate                        |         | -       | -       | -       | I       | ă     | 7.5   |                          |         |         |          |           | 61                | 46       | 7+4+3+8+17<br>+17+23+12<br>=91cm | 150.00              |
|               | 7.5   | 9.0     |           | CORE    | weathering (Grade III)                      |         | -       | I       | -       | -       |       | 9.0   |                          |         |         |          |           | 61                | 56       | 8+12+17<br>+55=92cm              | 190.00              |
|               | 9.0   | 10.5    | 1.5       | CORE    | Gneiss with Slight<br>weathering (Grade II) |         | -       | -       | -       | -       |       | 10.5  |                          |         |         |          |           | 71                | 67       | 25+63+12<br>+7=107cm             | 220.00              |



Annexure III (Soil & Rock Results)



| Depth | (m)            |      |        | ize distrib<br>ieving (% |             | Grain siz |      | tion by Hy<br>sis (%) | drometer | UD           | / DS sam    | ple                             |                     | Attert       | oerg Limit   | s (%)            | Sh        | iear Paran    | neters of s | soil                 | _                                           | est of                                    |         |
|-------|----------------|------|--------|--------------------------|-------------|-----------|------|-----------------------|----------|--------------|-------------|---------------------------------|---------------------|--------------|--------------|------------------|-----------|---------------|-------------|----------------------|---------------------------------------------|-------------------------------------------|---------|
|       | Density (g/cc) |      |        |                          |             |           |      |                       |          |              |             |                                 | of soil             |              |              |                  | Direct sl | near test     |             | nfined<br>ssion test | [( <sup>,</sup> ) xə                        | ession t                                  |         |
| From  | То             | Type | Gravel | Sand                     | Silt & Clay | Gravel    | Sand | Silt                  | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)   | phi (degrees) | C (kPa)     | phi (degrees)        | Consolidation test<br>[Compression Index (C | Unconfined Compression test<br>Rock (Mpa) | Damarke |
| 0.0   | 1.5            | SPT  | -      | -                        | -           | -         | -    | -                     | -        | 1.87         | 1.70        | 10                              | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         | -       |
| 1.5   | 3.0            | SPT  | -      | -                        | -           | -         | -    | -                     | -        | 1.91         | 1.79        | 7                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 3.0   | 4.5            | SPT  | -      | -                        | -           | -         | -    | -                     | -        | 1.95         | 1.86        | 5                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 4.5   | 6.0            | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 6.0   | 7.5            | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 7.5   | 9.0            | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 9.0   | 10.5           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 10.5  | 12.0           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 2.0   | 13.5           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 13.5  | 15.0           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 5.0   | 16.5           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| .6.5  | 18.0           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | -                                         |         |
| 8.0   | 19.5           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | 95.9                                      |         |
| 9.5   | 21.0           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | 110.2                                     |         |
| 1.0   | 22.5           | CORE | -      | -                        | -           | -         | -    | -                     | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -           | -                    | -                                           | 113.6                                     |         |



|   | test of                                   |                                             | ioil                 | neters of s | iear Paran    | Sh        | s (%)            | berg Limit   | Atter        |                     | ple                             | th (m) Grain size distribution by sieving (%) Grain size distribution by Hydrometer analysis (%) UD / DS sample (%) |              |      |      |      |        |             |      |        |      |      |      |
|---|-------------------------------------------|---------------------------------------------|----------------------|-------------|---------------|-----------|------------------|--------------|--------------|---------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------|------|------|------|--------|-------------|------|--------|------|------|------|
|   | ession .                                  | [( <sup>2</sup> ) xa                        | nfined<br>ssion test |             | hear test     | Direct sl |                  |              |              | soil                |                                 | Density (g/cc)                                                                                                      |              |      |      |      |        |             |      |        |      |      |      |
| 0 | Unconfined Compression test<br>Rock (Mpa) | Consolidation test<br>[Compression Index (C | phi (degrees)        | C (kPa)     | phi (degrees) | C (kPa)   | Plasticity Index | Plastic imit | Liquid Limit | Specific Gravity of | Natural Moisture<br>Content (%) | Dry Density                                                                                                         | Bulk Density | Clay | Silt | Sand | Gravel | Silt & Clay | Sand | Gravel | Type | То   | From |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | DS   | 1.5  | 0.0  |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | UDS  | 3.0  | 1.5  |
|   | -                                         | -                                           | -                    | -           | -             | -         | NP               | NP           | 23           | 2.62                | 12                              | 1.50                                                                                                                | 1.68         | 10   | 28   | 52   | 10     | -           | -    | -      | SPT  | 3.5  | 3.0  |
|   | -                                         | -                                           | -                    | -           | -             | -         | NP               | NP           | 22           | 2.64                | 9                               | 1.59                                                                                                                | 1.73         | 11   | 25   | 53   | 11     | -           | -    | -      | SPT  | 4.5  | 3.5  |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | 5                               | 1.82                                                                                                                | 1.91         | -    | -    | -    | -      | -           | -    | -      | SPT  | 6.0  | 4.5  |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | 5                               | 1.83                                                                                                                | 1.92         | -    | -    | -    | -      | -           | -    | -      | SPT  | 7.5  | 6.0  |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | CORE | 9.0  | 7.5  |
|   | -                                         | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | CORE | 10.5 | 9.0  |
|   | 58.9                                      | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | CORE | 12.0 | .0.5 |
|   | 61.2                                      | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | CORE | 13.5 | 2.0  |
|   | 68.9                                      | -                                           | -                    | -           | -             | -         | -                | -            | -            | -                   | -                               | -                                                                                                                   | -            | -    | -    | -    | -      | -           | -    | -      | CORE | 15.0 | 3.5  |



|       | В                                            | BH.NO: | BH-9/  | 300                       |             |           |                       |          |          |              |             |                                 |                                              |              |              |                  |                      |               | Date        | of testing    | : 01/10/2                                                   | 2021 to 03                                | 8/10/20                                                                              |
|-------|----------------------------------------------|--------|--------|---------------------------|-------------|-----------|-----------------------|----------|----------|--------------|-------------|---------------------------------|----------------------------------------------|--------------|--------------|------------------|----------------------|---------------|-------------|---------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|
| Depti | n (m)                                        |        |        | ize distrib<br>sieving (% |             | Grain siz | e distribut<br>analys |          | drometer | UD           | / DS sam    | ple                             |                                              | Atterl       | berg Limit   | s (%)            | Sh                   | iear Paran    | neters of s | soil          | [                                                           | test of                                   |                                                                                      |
|       |                                              |        |        |                           |             |           | Density               | / (g/cc) |          | soil         |             |                                 |                                              | Direct sl    | hear test    |                  | nfined<br>ssion test | ex (C c       | ession      |               |                                                             |                                           |                                                                                      |
| From  | То                                           | Type   | Gravel | Sand                      | Silt & Clay | Gravel    | Sand                  | Silt     | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of                          | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)              | phi (degrees) | C (kPa)     | phi (degrees) | Consolidation test<br>[Compression Index (C <sub>c</sub> )] | Unconfined Compression test<br>Rock (Mpa) | Remarks                                                                              |
| 0.0   | 1.5                                          | SPT    | 11     | 58                        | 31          | -         | -                     | -        | -        | 1.53         | 1.35        | 13                              | 2.62                                         | 25           | NP           | NP               | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 1.5   | 3.0                                          | UDS    | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 3.0   | 4.5                                          | SPT    | -      | -                         | -           | 11        | 53                    | 28       | 8        | 1.69         | 1.54        | 10                              | 2.64                                         | 26           | NP           | NP               | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 4.5   | 6.0                                          | SPT    | -      | -                         | -           | 10        | 54                    | 30       | 6        | 1.73         | 1.57        | 10                              | 2.65                                         | 24           | NP           | NP               | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 6.0   | 7.5                                          | SPT    | -      | -                         | -           | 10        | 54                    | 31       | 5        | 1.74         | 1.60        | 9                               | 2.67                                         | 24           | NP           | NP               | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 7.5   | 9.0                                          | SPT    | -      | -                         | -           | -         | -                     | -        | -        | 1.82         | 1.72        | 6                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 9.0   | 10.5                                         | SPT    | -      | -                         | -           | -         | -                     | -        | -        | 1.86         | 1.77        | 5                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 10.5  | 12.0                                         | SPT    | -      | -                         | -           | -         | -                     | -        | -        | 1.91         | 1.82        | 5                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 12.0  | 13.5                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 13.5  | 15.0                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 15.0  | 16.5                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 16.5  | 18.0                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 18.0  | 19.5                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 19.5  | 21.0                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
| 21.0  | 22.5                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | 20.1                                      | -                                                                                    |
| 22.5  | 24.0                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | 23.5                                      | -                                                                                    |
| 24.0  | 25.5                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | 23.5                                      | -                                                                                    |
| 25.5  | 27.0                                         | CORE   | -      | -                         | -           | -         | -                     | -        | -        | -            | -           | -                               | -                                            | -            | -            | -                | -                    | -             | -           | -             | -                                                           | -                                         | -                                                                                    |
|       | <u>.                                    </u> |        | 1      | 1                         |             |           | 1                     | 1        |          |              | <u> </u>    | 1                               | <u>ı                                    </u> |              | 1            | 1                | 1                    | <u> </u>      | 1           | +             |                                                             |                                           | )<br>yyy, cuth,<br>court, mite.acc, m<br>technical Manager<br>orient Signatory<br>ad |



| Depth | (m)  |      |        | ize distrib<br>sieving (% |             | Grain siz | e distribut<br>analys |      | drometer | UD           | ) / DS sam  | ple                             |                     | Atter        | berg Limit   | s (%)            | Sh        | iear Paran    | neters of s      | oil                 | _                                           | test of                                   |  |
|-------|------|------|--------|---------------------------|-------------|-----------|-----------------------|------|----------|--------------|-------------|---------------------------------|---------------------|--------------|--------------|------------------|-----------|---------------|------------------|---------------------|---------------------------------------------|-------------------------------------------|--|
|       |      |      |        |                           |             |           |                       |      |          | Densit       | y (g/cc)    |                                 | soil                |              |              |                  | Direct sl | hear test     | Uncor<br>compres | nfined<br>sion test | ex (C <sub>C</sub> )]                       | ression                                   |  |
| rom   | То   | Type | Gravel | Sand                      | Silt & Clay | Gravel    | Sand                  | Silt | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)   | phi (degrees) | C (kPa)          | phi (degrees)       | Consolidation test<br>[Compression Index (C | Unconfined Compression test<br>Rock (Mpa) |  |
| 0.0   | 1.5  | SPT  | 14     | 58                        | 28          | -         | -                     | -    | -        | 1.58         | 1.37        | 15                              | 2.59                | 24           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| 1.5   | 3.0  | SPT  | 13     | 62                        | 25          | -         | -                     | -    | -        | 1.61         | 1.42        | 13                              | 2.61                | 26           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| 3.0   | 4.5  | SPT  | -      | -                         | -           | 4         | 55                    | 31   | 10       | 1.63         | 1.46        | 12                              | 2.62                | 25           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| 4.5   | 6.0  | SPT  | -      | -                         | -           | 9         | 53                    | 30   | 8        | 1.65         | 1.47        | 12                              | 2.62                | 25           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| 5.0   | 7.5  | SPT  | -      | -                         | -           | 7         | 57                    | 28   | 8        | 1.65         | 1.50        | 10                              | 2.64                | 23           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| 7.5   | 9.0  | SPT  | -      | -                         | -           | 5         | 59                    | 29   | 7        | 1.68         | 1.54        | 9                               | 2.66                | 23           | NP           | NP               | -         | -             | -                | -                   | -                                           | -                                         |  |
| .0    | 10.5 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | 1.75         | 1.61        | 9                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| ).5   | 12.0 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 2.0   | 13.5 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 3.5   | 15.0 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 5.0   | 16.5 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| ō.5   | 18.0 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 8.0   | 19.5 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| .5    | 21.0 | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| L.O   | 22.5 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 2.5   | 24.0 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 1.0   | 25.5 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 5.5   | 27.0 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| 7.0   | 28.5 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | -                                         |  |
| .5    | 30.0 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | 27.8                                      |  |
| .0    | 31.5 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | 29.5                                      |  |
| .5    | 33.0 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -                   | -                                           | 33.9                                      |  |



| Depth | (m)  |      |        | ize distrib<br>sieving (% |             | Grain siz | e distribut<br>analys |      | drometer | UD           | / DS sam    | ple                             |                          | Attert       | oerg Limit   | s (%)            | Sh        | iear Paran    | neters of s      | oil           | اله                                     | test of                       |         |
|-------|------|------|--------|---------------------------|-------------|-----------|-----------------------|------|----------|--------------|-------------|---------------------------------|--------------------------|--------------|--------------|------------------|-----------|---------------|------------------|---------------|-----------------------------------------|-------------------------------|---------|
|       |      |      |        |                           |             |           |                       |      |          | Density      | / (g/cc)    |                                 | soil                     |              |              |                  | Direct sl | hear test     | Uncor<br>compres |               | ex (C                                   | Compression test              |         |
| rom   | То   | Type | Gravel | Sand                      | Silt & Clay | Gravel    | Sand                  | Silt | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of soil | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)   | phi (degrees) | C (kPa)          | phi (degrees) | Consolidation test<br>[Compression Inde | Unconfined Comp<br>Rock (Mpa) | Remarks |
| 0.0   | 1.5  | DS   | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | -                             | -       |
| 1.5   | 3.0  | DS   | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | -                             | -       |
| 3.0   | 4.5  | SPT  | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | -                             | -       |
| 4.5   | 6.0  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | -                             | -       |
| 6.0   | 7.5  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | -                             | -       |
| 7.5   | 9.0  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | 17.5                          | -       |
| 9.0   | 10.5 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | 24.6                          | -       |
| .0.5  | 12.0 | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                        | -            | -            | -                | -         | -             | -                | -             | -                                       | 25.4                          | -       |

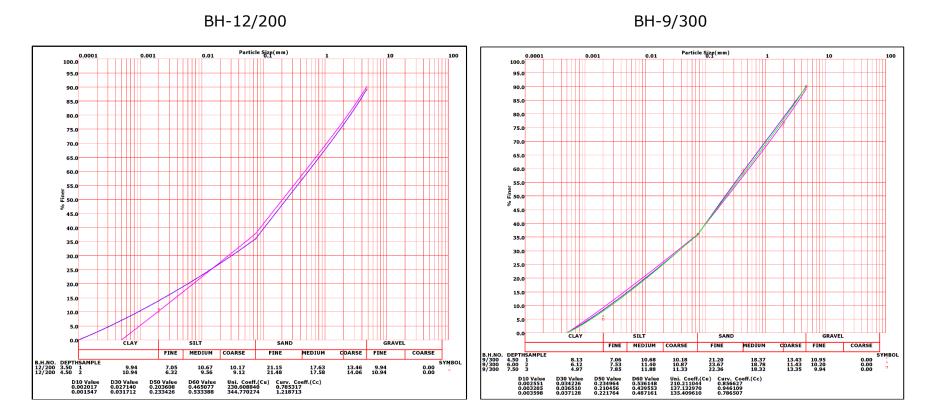


| Depth | ı (m) |      |        | ize distrib<br>sieving (% |             | Grain siz | e distribut<br>analys |      | drometer | UD           | / DS sam    | ple                             |                     | Atterl       | berg Limit   | s (%)            | Sh       | iear Paran    | neters of s | soil                 | _                                           | est of                                    |   |
|-------|-------|------|--------|---------------------------|-------------|-----------|-----------------------|------|----------|--------------|-------------|---------------------------------|---------------------|--------------|--------------|------------------|----------|---------------|-------------|----------------------|---------------------------------------------|-------------------------------------------|---|
|       |       |      |        |                           |             |           |                       |      |          | Density      | / (g/cc)    |                                 | of soil             |              |              |                  | Direct s | hear test     |             | nfined<br>ssion test | ex (C _)]                                   | ression t                                 |   |
| rom   | То    | Type | Gravel | Sand                      | Silt & Clay | Gravel    | Sand                  | Silt | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)  | phi (degrees) | C (kPa)     | phi (degrees)        | Consolidation test<br>[Compression Index (C | Unconfined Compression test<br>Rock (Mpa) |   |
| 0.0   | 1.5   | SPT  | 11     | 29                        | 60          | -         | -                     | -    | -        | 1.55         | 1.35        | 15                              | 2.57                | 28           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         | - |
| 1.5   | 3.0   | SPT  | 11     | 31                        | 58          | -         | -                     | -    | -        | 1.59         | 1.41        | 13                              | 2.59                | 26           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         | - |
| 3.0   | 4.5   | SPT  | -      | -                         | -           | 9         | 24                    | 56   | 11       | 1.62         | 1.42        | 14                              | 2.61                | 27           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         | - |
| 4.5   | 6.0   | SPT  | -      | -                         | -           | 9         | 26                    | 52   | 13       | 1.63         | 1.46        | 12                              | 2.63                | 25           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         |   |
| 6.0   | 7.5   | SPT  | -      | -                         | -           | 11        | 25                    | 54   | 10       | 1.65         | 1.49        | 11                              | 2.62                | 26           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         |   |
| 7.5   | 9.0   | SPT  | -      | -                         | -           | 11        | 24                    | 56   | 9        | 1.67         | 1.49        | 12                              | 2.62                | 25           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         |   |
| 9.0   | 10.5  | SPT  | -      | -                         | -           | 10        | 20                    | 61   | 9        | 1.71         | 1.55        | 10                              | 2.65                | 23           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         |   |
| 10.5  | 12.0  | SPT  | -      | -                         | -           | 9         | 23                    | 58   | 10       | 1.79         | 1.63        | 10                              | 2.67                | 22           | NP           | NP               | -        | -             | -           | -                    | -                                           | -                                         |   |
| 12.0  | 13.5  | SPT  | -      | -                         | -           | -         | -                     | -    | -        | 1.85         | 1.73        | 7                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | -                                         |   |
| 13.5  | 15.0  | SPT  | -      | -                         | -           | -         | -                     | -    | -        | 1.92         | 1.79        | 7                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | -                                         |   |
| 15.0  | 16.5  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | -                                         | - |
| L6.5  | 18.0  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | 50.4                                      |   |
| 18.0  | 19.5  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | 55.6                                      |   |
| 19.5  | 21.0  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | 60.1                                      |   |
| 21.0  | 22.5  | CORE | -      | -                         | -           | -         | -                     | -    | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -           | -                    | -                                           | 68.8                                      | 1 |



|       |                                                                                                                                                                                                                                                    |      |        |                            |             |           |                       |                        |          |              |             |                                 |                     |              | Dungt        |                  |          |               | inay i           | loject              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----------------------------|-------------|-----------|-----------------------|------------------------|----------|--------------|-------------|---------------------------------|---------------------|--------------|--------------|------------------|----------|---------------|------------------|---------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|       | BH.NO:   BH-206/800     Depth (m)   Grain size distribution by<br>Grain size distribution by<br>Depth (m)   UD / DS sample |      |        |                            |             |           |                       |                        |          |              |             |                                 |                     |              |              |                  |          | Date          | e of testing     | g:05/10/            | 2021 to 06                                                  | /10/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| Depth | n (m)                                                                                                                                                                                                                                              |      |        | size distrib<br>sieving (% |             | Grain siz | e distribut<br>analys | tion by Hye<br>sis (%) | drometer | UD           | ) / DS sam  | ple                             |                     | Atter        | berg Limit   | s (%)            | S        | near Param    | neters of s      | oil                 | _                                                           | test of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
|       |                                                                                                                                                                                                                                                    |      |        |                            |             |           |                       |                        |          | Density      | y (g/cc)    |                                 | soil                |              |              |                  | Direct s | hear test     | Uncor<br>compres | nfined<br>sion test | x (C <sub>c</sub> )                                         | ssion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |
| From  | То                                                                                                                                                                                                                                                 | Type | Gravel | Sand                       | Silt & Clay | Gravel    | Sand                  | Silt                   | Clay     | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)  | phi (degrees) | C (kPa)          | phi (degrees)       | Consolidation test<br>[Compression Index (C <sub>c</sub> )] | Unconfined Compression test<br>Rock (Mpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                       |
| 0.0   | 1.5                                                                                                                                                                                                                                                | SPT  | 9      | 59                         | 32          | -         | -                     | -                      | -        | 1.55         | 1.36        | 14                              | 2.62                | 24           | NP           | NP               | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 1.5   | 3.0                                                                                                                                                                                                                                                | SPT  | -      | -                          | -           | 10        | 50                    | 29                     | 11       | 1.62         | 1.45        | 12                              | 2.64                | 23           | NP           | NP               | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 3.0   | 4.5                                                                                                                                                                                                                                                | SPT  | -      | -                          | -           | 9         | 49                    | 30                     | 12       | 1.64         | 1.49        | 10                              | 2.65                | 22           | NP           | NP               | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 4.5   | 6.0                                                                                                                                                                                                                                                | SPT  | -      | -                          | -           | 8         | 49                    | 31                     | 12       | 1.66         | 1.54        | 8                               | 2.66                | 23           | NP           | NP               | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 6.0   | 7.5                                                                                                                                                                                                                                                | SPT  | -      | -                          | -           | 9         | 51                    | 30                     | 10       | 1.69         | 1.56        | 8                               | 2.66                | 23           | NP           | NP               | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 7.5   | 9.0                                                                                                                                                                                                                                                | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 9.0   | 10.5                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 10.5  | 12.0                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 12.0  | 13.5                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 13.5  | 15.0                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 15.0  | 16.5                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 16.5  | 18.0                                                                                                                                                                                                                                               | SPT  | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 18.0  | 19.5                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 19.5  | 21.0                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 21.0  | 22.5                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                             |
| 22.5  | 24.0                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | 56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                             |
| 24.0  | 25.5                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                             |
| 25.5  | 27.0                                                                                                                                                                                                                                               | CORE | -      | -                          | -           | -         | -                     | -                      | -        | -            | -           | -                               | -                   | -            | -            | -                | -        | -             | -                | -                   | -                                                           | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                             |
|       |                                                                                                                                                                                                                                                    |      |        |                            |             |           |                       |                        |          |              |             |                                 |                     |              |              |                  |          |               |                  |                     |                                                             | Presente ci<br>Creacedri - Creacedri - Creace | Nucle No.<br>Ingl. ALL ALC F. HID.<br>Induced Signatory<br>Id |

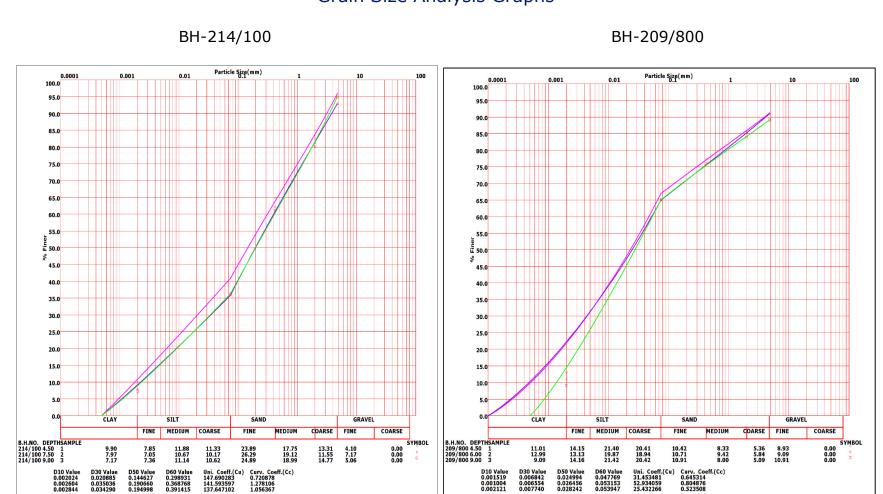



|       |       |      | Grains | ize distrib | ution by    | Grain siz  | e distribut | tion by Hy | drometer  |              |             |                                 |                     |              |              |                  |           |               |                  |               |                                         | of                                        |                                                                      |
|-------|-------|------|--------|-------------|-------------|------------|-------------|------------|-----------|--------------|-------------|---------------------------------|---------------------|--------------|--------------|------------------|-----------|---------------|------------------|---------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Depth | ı (m) |      |        | sieving (%  |             | 010111 312 |             | sis (%)    | uronneter | UD           | / DS sam    | ple                             |                     | Atter        | berg Limit   | s (%)            | Sh        | iear Paran    | neters of s      | oil           | [(2                                     | test                                      |                                                                      |
|       |       |      |        |             |             |            |             |            |           | Density      | / (g/cc)    |                                 | soil                |              |              |                  | Direct sl | hear test     | Uncor<br>compres |               | x (C                                    | ession                                    |                                                                      |
| From  | То    | Type | Gravel | Sand        | Silt & Clay | Gravel     | Sand        | Silt       | Clay      | Bulk Density | Dry Density | Natural Moisture<br>Content (%) | Specific Gravity of | Liquid Limit | Plastic imit | Plasticity Index | C (kPa)   | phi (degrees) | C (kPa)          | phi (degrees) | Consolidation test<br>[Compression Inde | Unconfined Compression test<br>Rock (Mpa) | Remarks                                                              |
| 0.0   | 1.5   | 56   | -      | -           | -           | -          | -           | -          | -         | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -             | -                                       | -                                         | -                                                                    |
| 1.5   | 3.0   | DS   | -      | -           | -           | -          | -           | -          | -         | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -             | -                                       | -                                         | -                                                                    |
| 3.0   | 4.5   | SPT  | -      | -           | -           | 8          | 30          | 50         | 12        | 1.62         | 1.50        | 8                               | 2.63                | 21           | NP           | NP               | -         | -             | -                | -             | -                                       | -                                         |                                                                      |
| 4.5   | 6.0   | SPT  | -      | -           | -           | 8          | 29          | 53         | 10        | 1.65         | 1.53        | 8                               | 2.65                | 21           | NP           | NP               | -         | -             | -                | -             | -                                       | -                                         |                                                                      |
| 6.0   | 7.5   | CORE | -      | -           | -           | -          | -           | -          | -         | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -             | -                                       | 80.2                                      |                                                                      |
| 7.5   | 9.0   | CORE | -      | -           | -           | -          | -           | -          | -         | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -             | -                                       | 80.7                                      |                                                                      |
| 9.0   | 10.5  | CORE | -      | -           | -           | -          | -           | -          | -         | -            | -           | -                               | -                   | -            | -            | -                | -         | -             | -                | -             | -                                       | 85.2                                      |                                                                      |
|       |       | 1    |        | r.          | 1           |            | 1           | 1          | 1         |              |             | 1                               | r.                  | 1            |              | r.               | 1         |               | 1                |               |                                         | Star Strand                               | )<br>Type atte.<br>h canal Man<br>/ Technical Man<br>hostinet Signed |



# Annexure IV (Graphs)

K-RIDE/PROJECTS/65/2020/SBRP/5051





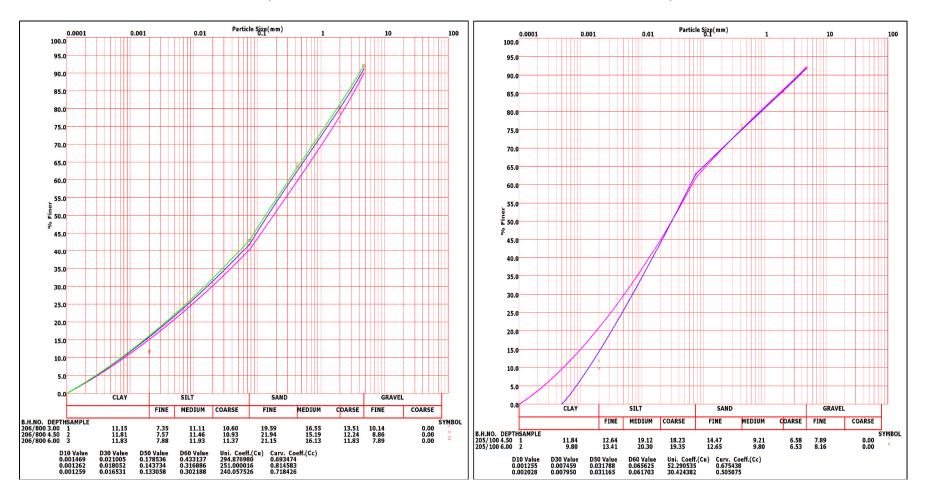

## Grain Size Analysis Graphs

K-RIDE/PROJECTS/65/2020/SBRP/5051





## Grain Size Analysis Graphs


K-RIDE/PROJECTS/65/2020/SBRP/5051



## Grain Size Analysis Graphs

BH-206/800

BH-205/100



K-RIDE/PROJECTS/65/2020/SBRP/5051



Annexure V (Laboratory Test Photos)



## LAB TEST PHOTOS

| Hydrometer Analysis (Soil) | Moisture Content Test (Soil)               |
|----------------------------|--------------------------------------------|
|                            |                                            |
| Density (Soil)             | Liquid Limit (Soil)                        |
|                            |                                            |
| UCS (Rock)                 |                                            |
|                            |                                            |
|                            | <image/> <section-header></section-header> |

\*END OF SECTION\*



Annexure VI (Site Photos)



# Core Boxes











\*END OF SECTION\*



## **Field Photos**









\*END OF SECTION\*